| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2d | GIF version | ||
| Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) |
| Ref | Expression |
|---|---|
| en2d.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
| en2d.2 | ⊢ (𝜑 → 𝐵 ∈ V) |
| en2d.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) |
| en2d.4 | ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) |
| en2d.5 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
| Ref | Expression |
|---|---|
| en2d | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 2 | en2d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 3 | eqid 2209 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | en2d.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) | |
| 5 | 4 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ V) |
| 6 | en2d.4 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) | |
| 7 | 6 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ V) |
| 8 | en2d.5 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) | |
| 9 | 3, 5, 7, 8 | f1od 6179 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→𝐵) |
| 10 | f1oen2g 6876 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 11 | 1, 2, 9, 10 | syl3anc 1252 | 1 ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 Vcvv 2779 class class class wbr 4062 ↦ cmpt 4124 –1-1-onto→wf1o 5293 ≈ cen 6855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-en 6858 |
| This theorem is referenced by: en2i 6891 map1 6935 |
| Copyright terms: Public domain | W3C validator |