ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2d GIF version

Theorem en2d 6746
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en2d.1 (𝜑𝐴 ∈ V)
en2d.2 (𝜑𝐵 ∈ V)
en2d.3 (𝜑 → (𝑥𝐴𝐶 ∈ V))
en2d.4 (𝜑 → (𝑦𝐵𝐷 ∈ V))
en2d.5 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
Assertion
Ref Expression
en2d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en2d
StepHypRef Expression
1 en2d.1 . 2 (𝜑𝐴 ∈ V)
2 en2d.2 . 2 (𝜑𝐵 ∈ V)
3 eqid 2170 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
4 en2d.3 . . . 4 (𝜑 → (𝑥𝐴𝐶 ∈ V))
54imp 123 . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ V)
6 en2d.4 . . . 4 (𝜑 → (𝑦𝐵𝐷 ∈ V))
76imp 123 . . 3 ((𝜑𝑦𝐵) → 𝐷 ∈ V)
8 en2d.5 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
93, 5, 7, 8f1od 6052 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴1-1-onto𝐵)
10 f1oen2g 6733 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ (𝑥𝐴𝐶):𝐴1-1-onto𝐵) → 𝐴𝐵)
111, 2, 9, 10syl3anc 1233 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  Vcvv 2730   class class class wbr 3989  cmpt 4050  1-1-ontowf1o 5197  cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-en 6719
This theorem is referenced by:  en2i  6748  map1  6790
  Copyright terms: Public domain W3C validator