ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2d GIF version

Theorem en2d 6889
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en2d.1 (𝜑𝐴 ∈ V)
en2d.2 (𝜑𝐵 ∈ V)
en2d.3 (𝜑 → (𝑥𝐴𝐶 ∈ V))
en2d.4 (𝜑 → (𝑦𝐵𝐷 ∈ V))
en2d.5 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
Assertion
Ref Expression
en2d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en2d
StepHypRef Expression
1 en2d.1 . 2 (𝜑𝐴 ∈ V)
2 en2d.2 . 2 (𝜑𝐵 ∈ V)
3 eqid 2209 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
4 en2d.3 . . . 4 (𝜑 → (𝑥𝐴𝐶 ∈ V))
54imp 124 . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ V)
6 en2d.4 . . . 4 (𝜑 → (𝑦𝐵𝐷 ∈ V))
76imp 124 . . 3 ((𝜑𝑦𝐵) → 𝐷 ∈ V)
8 en2d.5 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
93, 5, 7, 8f1od 6179 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴1-1-onto𝐵)
10 f1oen2g 6876 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ (𝑥𝐴𝐶):𝐴1-1-onto𝐵) → 𝐴𝐵)
111, 2, 9, 10syl3anc 1252 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  Vcvv 2779   class class class wbr 4062  cmpt 4124  1-1-ontowf1o 5293  cen 6855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-en 6858
This theorem is referenced by:  en2i  6891  map1  6935
  Copyright terms: Public domain W3C validator