Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en2d | GIF version |
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
en2d.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
en2d.2 | ⊢ (𝜑 → 𝐵 ∈ V) |
en2d.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) |
en2d.4 | ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) |
en2d.5 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
Ref | Expression |
---|---|
en2d | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | en2d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) | |
3 | eqid 2170 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | en2d.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) | |
5 | 4 | imp 123 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ V) |
6 | en2d.4 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) | |
7 | 6 | imp 123 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ V) |
8 | en2d.5 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) | |
9 | 3, 5, 7, 8 | f1od 6052 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→𝐵) |
10 | f1oen2g 6733 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
11 | 1, 2, 9, 10 | syl3anc 1233 | 1 ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 class class class wbr 3989 ↦ cmpt 4050 –1-1-onto→wf1o 5197 ≈ cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-en 6719 |
This theorem is referenced by: en2i 6748 map1 6790 |
Copyright terms: Public domain | W3C validator |