Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en3d | Unicode version |
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
en3d.1 | |
en3d.2 | |
en3d.3 | |
en3d.4 | |
en3d.5 |
Ref | Expression |
---|---|
en3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en3d.1 | . 2 | |
2 | en3d.2 | . 2 | |
3 | eqid 2154 | . . 3 | |
4 | en3d.3 | . . . 4 | |
5 | 4 | imp 123 | . . 3 |
6 | en3d.4 | . . . 4 | |
7 | 6 | imp 123 | . . 3 |
8 | en3d.5 | . . . 4 | |
9 | 8 | imp 123 | . . 3 |
10 | 3, 5, 7, 9 | f1o2d 6015 | . 2 |
11 | f1oen2g 6689 | . 2 | |
12 | 1, 2, 10, 11 | syl3anc 1217 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 cvv 2709 class class class wbr 3961 cmpt 4021 wf1o 5162 cen 6672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-en 6675 |
This theorem is referenced by: en3i 6705 fundmen 6740 mapen 6780 mapxpen 6782 ssenen 6785 fzen 9923 uzennn 10313 hashfacen 10684 hashdvds 12064 |
Copyright terms: Public domain | W3C validator |