ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en3d Unicode version

Theorem en3d 6663
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en3d.1  |-  ( ph  ->  A  e.  _V )
en3d.2  |-  ( ph  ->  B  e.  _V )
en3d.3  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
en3d.4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )
en3d.5  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  =  D  <->  y  =  C ) ) )
Assertion
Ref Expression
en3d  |-  ( ph  ->  A  ~~  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem en3d
StepHypRef Expression
1 en3d.1 . 2  |-  ( ph  ->  A  e.  _V )
2 en3d.2 . 2  |-  ( ph  ->  B  e.  _V )
3 eqid 2139 . . 3  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
4 en3d.3 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
54imp 123 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
6 en3d.4 . . . 4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )
76imp 123 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
8 en3d.5 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  =  D  <->  y  =  C ) ) )
98imp 123 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
103, 5, 7, 9f1o2d 5975 . 2  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-onto-> B
)
11 f1oen2g 6649 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  (
x  e.  A  |->  C ) : A -1-1-onto-> B )  ->  A  ~~  B
)
121, 2, 10, 11syl3anc 1216 1  |-  ( ph  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2686   class class class wbr 3929    |-> cmpt 3989   -1-1-onto->wf1o 5122    ~~ cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-en 6635
This theorem is referenced by:  en3i  6665  fundmen  6700  mapen  6740  mapxpen  6742  ssenen  6745  fzen  9823  uzennn  10209  hashfacen  10579  hashdvds  11897
  Copyright terms: Public domain W3C validator