ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en3d Unicode version

Theorem en3d 6671
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en3d.1  |-  ( ph  ->  A  e.  _V )
en3d.2  |-  ( ph  ->  B  e.  _V )
en3d.3  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
en3d.4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )
en3d.5  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  =  D  <->  y  =  C ) ) )
Assertion
Ref Expression
en3d  |-  ( ph  ->  A  ~~  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem en3d
StepHypRef Expression
1 en3d.1 . 2  |-  ( ph  ->  A  e.  _V )
2 en3d.2 . 2  |-  ( ph  ->  B  e.  _V )
3 eqid 2140 . . 3  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
4 en3d.3 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
54imp 123 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
6 en3d.4 . . . 4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )
76imp 123 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
8 en3d.5 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  =  D  <->  y  =  C ) ) )
98imp 123 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
103, 5, 7, 9f1o2d 5983 . 2  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-onto-> B
)
11 f1oen2g 6657 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  (
x  e.  A  |->  C ) : A -1-1-onto-> B )  ->  A  ~~  B
)
121, 2, 10, 11syl3anc 1217 1  |-  ( ph  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   _Vcvv 2689   class class class wbr 3937    |-> cmpt 3997   -1-1-onto->wf1o 5130    ~~ cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-en 6643
This theorem is referenced by:  en3i  6673  fundmen  6708  mapen  6748  mapxpen  6750  ssenen  6753  fzen  9854  uzennn  10240  hashfacen  10611  hashdvds  11933
  Copyright terms: Public domain W3C validator