| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en3d | Unicode version | ||
| Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) |
| Ref | Expression |
|---|---|
| en3d.1 |
|
| en3d.2 |
|
| en3d.3 |
|
| en3d.4 |
|
| en3d.5 |
|
| Ref | Expression |
|---|---|
| en3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en3d.1 |
. 2
| |
| 2 | en3d.2 |
. 2
| |
| 3 | eqid 2207 |
. . 3
| |
| 4 | en3d.3 |
. . . 4
| |
| 5 | 4 | imp 124 |
. . 3
|
| 6 | en3d.4 |
. . . 4
| |
| 7 | 6 | imp 124 |
. . 3
|
| 8 | en3d.5 |
. . . 4
| |
| 9 | 8 | imp 124 |
. . 3
|
| 10 | 3, 5, 7, 9 | f1o2d 6174 |
. 2
|
| 11 | f1oen2g 6869 |
. 2
| |
| 12 | 1, 2, 10, 11 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-en 6851 |
| This theorem is referenced by: en3i 6885 fundmen 6922 mapen 6968 mapxpen 6970 ssenen 6973 fzen 10200 uzennn 10618 hashfacen 11018 hashdvds 12658 |
| Copyright terms: Public domain | W3C validator |