ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en3d Unicode version

Theorem en3d 6759
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en3d.1  |-  ( ph  ->  A  e.  _V )
en3d.2  |-  ( ph  ->  B  e.  _V )
en3d.3  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
en3d.4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )
en3d.5  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  =  D  <->  y  =  C ) ) )
Assertion
Ref Expression
en3d  |-  ( ph  ->  A  ~~  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem en3d
StepHypRef Expression
1 en3d.1 . 2  |-  ( ph  ->  A  e.  _V )
2 en3d.2 . 2  |-  ( ph  ->  B  e.  _V )
3 eqid 2175 . . 3  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
4 en3d.3 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
54imp 124 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
6 en3d.4 . . . 4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )
76imp 124 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
8 en3d.5 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  =  D  <->  y  =  C ) ) )
98imp 124 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
103, 5, 7, 9f1o2d 6066 . 2  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-onto-> B
)
11 f1oen2g 6745 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  (
x  e.  A  |->  C ) : A -1-1-onto-> B )  ->  A  ~~  B
)
121, 2, 10, 11syl3anc 1238 1  |-  ( ph  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   _Vcvv 2735   class class class wbr 3998    |-> cmpt 4059   -1-1-onto->wf1o 5207    ~~ cen 6728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-en 6731
This theorem is referenced by:  en3i  6761  fundmen  6796  mapen  6836  mapxpen  6838  ssenen  6841  fzen  10013  uzennn  10406  hashfacen  10784  hashdvds  12188
  Copyright terms: Public domain W3C validator