ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oen2g Unicode version

Theorem f1oen2g 6906
Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6908 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
f1oen2g  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )

Proof of Theorem f1oen2g
StepHypRef Expression
1 f1of 5572 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
2 fex2 5492 . . . 4  |-  ( ( F : A --> B  /\  A  e.  V  /\  B  e.  W )  ->  F  e.  _V )
31, 2syl3an1 1304 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  A  e.  V  /\  B  e.  W )  ->  F  e.  _V )
433coml 1234 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-onto-> B )  ->  F  e.  _V )
5 simp3 1023 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-onto-> B )  ->  F : A -1-1-onto-> B )
6 f1oen3g 6905 . 2  |-  ( ( F  e.  _V  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
74, 5, 6syl2anc 411 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    e. wcel 2200   _Vcvv 2799   class class class wbr 4083   -->wf 5314   -1-1-onto->wf1o 5317    ~~ cen 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-en 6888
This theorem is referenced by:  f1oeng  6908  enrefg  6915  en2d  6919  en3d  6920  ener  6931  f1imaen2g  6945  cnven  6961  xpcomen  6986  exmidpw2en  7074  xpfi  7094  iccen  10202  nnenom  10656  eqgen  13764
  Copyright terms: Public domain W3C validator