ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2i Unicode version

Theorem en2i 6884
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.)
Hypotheses
Ref Expression
en2i.1  |-  A  e. 
_V
en2i.2  |-  B  e. 
_V
en2i.3  |-  ( x  e.  A  ->  C  e.  _V )
en2i.4  |-  ( y  e.  B  ->  D  e.  _V )
en2i.5  |-  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
)
Assertion
Ref Expression
en2i  |-  A  ~~  B
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem en2i
StepHypRef Expression
1 en2i.1 . . . 4  |-  A  e. 
_V
21a1i 9 . . 3  |-  ( T. 
->  A  e.  _V )
3 en2i.2 . . . 4  |-  B  e. 
_V
43a1i 9 . . 3  |-  ( T. 
->  B  e.  _V )
5 en2i.3 . . . 4  |-  ( x  e.  A  ->  C  e.  _V )
65a1i 9 . . 3  |-  ( T. 
->  ( x  e.  A  ->  C  e.  _V )
)
7 en2i.4 . . . 4  |-  ( y  e.  B  ->  D  e.  _V )
87a1i 9 . . 3  |-  ( T. 
->  ( y  e.  B  ->  D  e.  _V )
)
9 en2i.5 . . . 4  |-  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
)
109a1i 9 . . 3  |-  ( T. 
->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
112, 4, 6, 8, 10en2d 6882 . 2  |-  ( T. 
->  A  ~~  B )
1211mptru 1382 1  |-  A  ~~  B
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   T. wtru 1374    e. wcel 2178   _Vcvv 2776   class class class wbr 4059    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-en 6851
This theorem is referenced by:  mapsnen  6927  xpsnen  6941  xpassen  6950
  Copyright terms: Public domain W3C validator