![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > entr2i | Unicode version |
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
entr2i.1 |
![]() ![]() ![]() ![]() |
entr2i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
entr2i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | entr2i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | entr2i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | entri 6816 |
. 2
![]() ![]() ![]() ![]() |
4 | 3 | ensymi 6812 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4021 ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-br 4022 df-opab 4083 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-er 6563 df-en 6771 |
This theorem is referenced by: nnenom 10471 nninfct 12083 xpnnen 12456 |
Copyright terms: Public domain | W3C validator |