ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymi Unicode version

Theorem ensymi 6744
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
ensymi.2  |-  A  ~~  B
Assertion
Ref Expression
ensymi  |-  B  ~~  A

Proof of Theorem ensymi
StepHypRef Expression
1 ensymi.2 . 2  |-  A  ~~  B
2 ensym 6743 . 2  |-  ( A 
~~  B  ->  B  ~~  A )
31, 2ax-mp 5 1  |-  B  ~~  A
Colors of variables: wff set class
Syntax hints:   class class class wbr 3981    ~~ cen 6700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-er 6497  df-en 6703
This theorem is referenced by:  entr2i  6749  entr3i  6750  entr4i  6751  omp1eom  7056  pm54.43  7142  dju1p1e2  7149  pw1dom2  7179  1nprm  12042  unennn  12326  ennnfonelemen  12350  ennnfonelemim  12353  exmidunben  12355  qnnen  12360  ctiunct  12369  nninfdc  12382  iooreen  13874
  Copyright terms: Public domain W3C validator