| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ensymi | Unicode version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) | 
| Ref | Expression | 
|---|---|
| ensymi.2 | 
 | 
| Ref | Expression | 
|---|---|
| ensymi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ensymi.2 | 
. 2
 | |
| 2 | ensym 6840 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    class class
class wbr 4033    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-er 6592 df-en 6800 | 
| This theorem is referenced by: entr2i 6846 entr3i 6847 entr4i 6848 omp1eom 7161 pm54.43 7257 dju1p1e2 7264 pw1dom2 7294 1nprm 12282 unennn 12614 ennnfonelemen 12638 ennnfonelemim 12641 exmidunben 12643 qnnen 12648 ctiunct 12657 nninfdc 12670 iooreen 15679 | 
| Copyright terms: Public domain | W3C validator |