ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymi Unicode version

Theorem ensymi 6874
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
ensymi.2  |-  A  ~~  B
Assertion
Ref Expression
ensymi  |-  B  ~~  A

Proof of Theorem ensymi
StepHypRef Expression
1 ensymi.2 . 2  |-  A  ~~  B
2 ensym 6873 . 2  |-  ( A 
~~  B  ->  B  ~~  A )
31, 2ax-mp 5 1  |-  B  ~~  A
Colors of variables: wff set class
Syntax hints:   class class class wbr 4044    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-er 6620  df-en 6828
This theorem is referenced by:  entr2i  6879  entr3i  6880  entr4i  6881  omp1eom  7197  pm54.43  7298  dju1p1e2  7305  pw1dom2  7339  1nprm  12436  unennn  12768  ennnfonelemen  12792  ennnfonelemim  12795  exmidunben  12797  qnnen  12802  ctiunct  12811  nninfdc  12824  iooreen  15974
  Copyright terms: Public domain W3C validator