ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymi Unicode version

Theorem ensymi 6555
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
ensymi.2  |-  A  ~~  B
Assertion
Ref Expression
ensymi  |-  B  ~~  A

Proof of Theorem ensymi
StepHypRef Expression
1 ensymi.2 . 2  |-  A  ~~  B
2 ensym 6554 . 2  |-  ( A 
~~  B  ->  B  ~~  A )
31, 2ax-mp 7 1  |-  B  ~~  A
Colors of variables: wff set class
Syntax hints:   class class class wbr 3853    ~~ cen 6511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-er 6308  df-en 6514
This theorem is referenced by:  entr2i  6560  entr3i  6561  entr4i  6562  pm54.43  6881  dju1p1e2  6886  1nprm  11437  unennn  11551  pw1dom2  12193
  Copyright terms: Public domain W3C validator