ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  entri Unicode version

Theorem entri 6812
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entri.1  |-  A  ~~  B
entri.2  |-  B  ~~  C
Assertion
Ref Expression
entri  |-  A  ~~  C

Proof of Theorem entri
StepHypRef Expression
1 entri.1 . 2  |-  A  ~~  B
2 entri.2 . 2  |-  B  ~~  C
3 entr 6810 . 2  |-  ( ( A  ~~  B  /\  B  ~~  C )  ->  A  ~~  C )
41, 2, 3mp2an 426 1  |-  A  ~~  C
Colors of variables: wff set class
Syntax hints:   class class class wbr 4018    ~~ cen 6764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-er 6559  df-en 6767
This theorem is referenced by:  entr2i  6813  entr3i  6814  entr4i  6815  xpomen  12446  znnen  12449  qnnen  12482
  Copyright terms: Public domain W3C validator