ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  entri Unicode version

Theorem entri 6842
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entri.1  |-  A  ~~  B
entri.2  |-  B  ~~  C
Assertion
Ref Expression
entri  |-  A  ~~  C

Proof of Theorem entri
StepHypRef Expression
1 entri.1 . 2  |-  A  ~~  B
2 entri.2 . 2  |-  B  ~~  C
3 entr 6840 . 2  |-  ( ( A  ~~  B  /\  B  ~~  C )  ->  A  ~~  C )
41, 2, 3mp2an 426 1  |-  A  ~~  C
Colors of variables: wff set class
Syntax hints:   class class class wbr 4030    ~~ cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-er 6589  df-en 6797
This theorem is referenced by:  entr2i  6843  entr3i  6844  entr4i  6845  xnn0nnen  10511  xpomen  12555  znnen  12558  qnnen  12591
  Copyright terms: Public domain W3C validator