ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfct Unicode version

Theorem nninfct 12181
Description: The limited principle of omniscience (LPO) implies that ℕ is countable. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nninfct  |-  ( om  e. Omni  ->  E. f  f : om -onto-> ( 1o ) )

Proof of Theorem nninfct
Dummy variables  g  h  i  j  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . 5  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
2 eqid 2193 . . . . 5  |-  ( n  e.  om  |->  ( k  e.  om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  =  ( n  e.  om  |->  ( k  e.  om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )
3 eqid 2193 . . . . 5  |-  ( ( ( n  e.  om  |->  ( k  e.  om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  o.  `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )  =  ( ( ( n  e.  om  |->  ( k  e.  om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  o.  `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
41, 2, 3nninfctlemfo 12180 . . . 4  |-  ( om  e. Omni  ->  ( ( ( n  e.  om  |->  ( k  e.  om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  o.  `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) :NN0*
-onto-> )
5 omex 4626 . . . . . . . 8  |-  om  e.  _V
65mptex 5785 . . . . . . 7  |-  ( n  e.  om  |->  ( k  e.  om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  e.  _V
7 frecex 6449 . . . . . . . 8  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  e.  _V
87cnvex 5205 . . . . . . 7  |-  `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  e.  _V
96, 8coex 5212 . . . . . 6  |-  ( ( n  e.  om  |->  ( k  e.  om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  o.  `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) )  e.  _V
10 pnfex 8075 . . . . . . . 8  |- +oo  e.  _V
11 1oex 6479 . . . . . . . . . 10  |-  1o  e.  _V
1211snex 4215 . . . . . . . . 9  |-  { 1o }  e.  _V
135, 12xpex 4775 . . . . . . . 8  |-  ( om 
X.  { 1o }
)  e.  _V
1410, 13opex 4259 . . . . . . 7  |-  <. +oo , 
( om  X.  { 1o } ) >.  e.  _V
1514snex 4215 . . . . . 6  |-  { <. +oo ,  ( om  X.  { 1o } ) >. }  e.  _V
169, 15unex 4473 . . . . 5  |-  ( ( ( n  e.  om  |->  ( k  e.  om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  o.  `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )  e. 
_V
17 foeq1 5473 . . . . 5  |-  ( f  =  ( ( ( n  e.  om  |->  ( k  e.  om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  o.  `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )  -> 
( f :NN0* -onto->  <->  (
( ( n  e. 
om  |->  ( k  e. 
om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  o.  `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) )  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) :NN0* -onto-> ) )
1816, 17spcev 2856 . . . 4  |-  ( ( ( ( n  e. 
om  |->  ( k  e. 
om  |->  if ( k  e.  n ,  1o ,  (/) ) ) )  o.  `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) )  u.  { <. +oo ,  ( om  X.  { 1o } ) >. } ) :NN0* -onto->  ->  E. f  f :NN0* -onto-> )
19 xnn0nnen 10511 . . . . . . . . 9  |- NN0*  ~~  NN
20 nnenom 10508 . . . . . . . . 9  |-  NN  ~~  om
2119, 20entr2i 6843 . . . . . . . 8  |-  om  ~~ NN0*
22 bren 6803 . . . . . . . 8  |-  ( om 
~~ NN0* 
<->  E. g  g : om -1-1-onto->NN0* )
2321, 22mpbi 145 . . . . . . 7  |-  E. g 
g : om -1-1-onto->NN0*
24 f1ofo 5508 . . . . . . 7  |-  ( g : om -1-1-onto->NN0*  ->  g : om -onto->NN0* )
2523, 24eximii 1613 . . . . . 6  |-  E. g 
g : om -onto->NN0*
26 foco 5488 . . . . . . . . 9  |-  ( ( f :NN0* -onto->  /\  g : om -onto->NN0* )  ->  ( f  o.  g
) : om -onto-> )
27 vex 2763 . . . . . . . . . . 11  |-  f  e. 
_V
28 vex 2763 . . . . . . . . . . 11  |-  g  e. 
_V
2927, 28coex 5212 . . . . . . . . . 10  |-  ( f  o.  g )  e. 
_V
30 foeq1 5473 . . . . . . . . . 10  |-  ( h  =  ( f  o.  g )  ->  (
h : om -onto->  <->  (
f  o.  g ) : om -onto-> ) )
3129, 30spcev 2856 . . . . . . . . 9  |-  ( ( f  o.  g ) : om -onto->  ->  E. h  h : om -onto-> )
3226, 31syl 14 . . . . . . . 8  |-  ( ( f :NN0* -onto->  /\  g : om -onto->NN0* )  ->  E. h  h : om -onto-> )
3332expcom 116 . . . . . . 7  |-  ( g : om -onto->NN0*  ->  ( f :NN0* -onto->  ->  E. h  h : om -onto-> ) )
3433exlimiv 1609 . . . . . 6  |-  ( E. g  g : om -onto->NN0*  ->  ( f :NN0* -onto->  ->  E. h  h : om -onto-> ) )
3525, 34ax-mp 5 . . . . 5  |-  ( f :NN0* -onto->  ->  E. h  h : om -onto-> )
3635exlimiv 1609 . . . 4  |-  ( E. f  f :NN0* -onto->  ->  E. h  h : om -onto-> )
374, 18, 363syl 17 . . 3  |-  ( om  e. Omni  ->  E. h  h : om -onto-> )
38 foeq1 5473 . . . 4  |-  ( h  =  f  ->  (
h : om -onto->  <->  f : om -onto-> ) )
3938cbvexv 1930 . . 3  |-  ( E. h  h : om -onto->  <->  E. f 
f : om -onto-> )
4037, 39sylib 122 . 2  |-  ( om  e. Omni  ->  E. f  f : om -onto-> )
41 infnninf 7185 . . . 4  |-  ( i  e.  om  |->  1o )  e.
42 elex2 2776 . . . 4  |-  ( ( i  e.  om  |->  1o )  e.  ->  E. j  j  e. )
4341, 42ax-mp 5 . . 3  |-  E. j 
j  e.
44 ctm 7170 . . 3  |-  ( E. j  j  e.  ->  ( E. f 
f : om -onto-> ( 1o )  <->  E. f  f : om -onto-> ) )
4543, 44ax-mp 5 . 2  |-  ( E. f  f : om -onto->
( 1o )  <->  E. f  f : om -onto-> )
4640, 45sylibr 134 1  |-  ( om  e. Omni  ->  E. f  f : om -onto-> ( 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2164    u. cun 3152   (/)c0 3447   ifcif 3558   {csn 3619   <.cop 3622   class class class wbr 4030    |-> cmpt 4091   omcom 4623    X. cxp 4658   `'ccnv 4659    o. ccom 4664   -onto->wfo 5253   -1-1-onto->wf1o 5254  (class class class)co 5919  freccfrec 6445   1oc1o 6464    ~~ cen 6794   ⊔ cdju 7098  ℕxnninf 7180  Omnicomni 7195   0cc0 7874   1c1 7875    + caddc 7877   +oocpnf 8053   NNcn 8984  NN0*cxnn0 9306   ZZcz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-er 6589  df-map 6706  df-en 6797  df-sup 7045  df-inf 7046  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145  df-nninf 7181  df-omni 7196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-xnn0 9307  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by:  nnnninfen  15581
  Copyright terms: Public domain W3C validator