| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfct | Unicode version | ||
| Description: The limited principle of omniscience (LPO) implies that ℕ∞ is countable. (Contributed by Jim Kingdon, 8-Jul-2025.) |
| Ref | Expression |
|---|---|
| nninfct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . . . 5
| |
| 2 | eqid 2207 |
. . . . 5
| |
| 3 | eqid 2207 |
. . . . 5
| |
| 4 | 1, 2, 3 | nninfctlemfo 12476 |
. . . 4
|
| 5 | omex 4659 |
. . . . . . . 8
| |
| 6 | 5 | mptex 5833 |
. . . . . . 7
|
| 7 | frecex 6503 |
. . . . . . . 8
| |
| 8 | 7 | cnvex 5240 |
. . . . . . 7
|
| 9 | 6, 8 | coex 5247 |
. . . . . 6
|
| 10 | pnfex 8161 |
. . . . . . . 8
| |
| 11 | 1oex 6533 |
. . . . . . . . . 10
| |
| 12 | 11 | snex 4245 |
. . . . . . . . 9
|
| 13 | 5, 12 | xpex 4808 |
. . . . . . . 8
|
| 14 | 10, 13 | opex 4291 |
. . . . . . 7
|
| 15 | 14 | snex 4245 |
. . . . . 6
|
| 16 | 9, 15 | unex 4506 |
. . . . 5
|
| 17 | foeq1 5516 |
. . . . 5
| |
| 18 | 16, 17 | spcev 2875 |
. . . 4
|
| 19 | xnn0nnen 10619 |
. . . . . . . . 9
| |
| 20 | nnenom 10616 |
. . . . . . . . 9
| |
| 21 | 19, 20 | entr2i 6902 |
. . . . . . . 8
|
| 22 | bren 6858 |
. . . . . . . 8
| |
| 23 | 21, 22 | mpbi 145 |
. . . . . . 7
|
| 24 | f1ofo 5551 |
. . . . . . 7
| |
| 25 | 23, 24 | eximii 1626 |
. . . . . 6
|
| 26 | foco 5531 |
. . . . . . . . 9
| |
| 27 | vex 2779 |
. . . . . . . . . . 11
| |
| 28 | vex 2779 |
. . . . . . . . . . 11
| |
| 29 | 27, 28 | coex 5247 |
. . . . . . . . . 10
|
| 30 | foeq1 5516 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | spcev 2875 |
. . . . . . . . 9
|
| 32 | 26, 31 | syl 14 |
. . . . . . . 8
|
| 33 | 32 | expcom 116 |
. . . . . . 7
|
| 34 | 33 | exlimiv 1622 |
. . . . . 6
|
| 35 | 25, 34 | ax-mp 5 |
. . . . 5
|
| 36 | 35 | exlimiv 1622 |
. . . 4
|
| 37 | 4, 18, 36 | 3syl 17 |
. . 3
|
| 38 | foeq1 5516 |
. . . 4
| |
| 39 | 38 | cbvexv 1943 |
. . 3
|
| 40 | 37, 39 | sylib 122 |
. 2
|
| 41 | infnninf 7252 |
. . . 4
| |
| 42 | elex2 2793 |
. . . 4
| |
| 43 | 41, 42 | ax-mp 5 |
. . 3
|
| 44 | ctm 7237 |
. . 3
| |
| 45 | 43, 44 | ax-mp 5 |
. 2
|
| 46 | 40, 45 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-2o 6526 df-er 6643 df-map 6760 df-en 6851 df-sup 7112 df-inf 7113 df-dju 7166 df-inl 7175 df-inr 7176 df-case 7212 df-nninf 7248 df-omni 7263 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-xnn0 9394 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 |
| This theorem is referenced by: nnnninfen 16160 |
| Copyright terms: Public domain | W3C validator |