ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpnnen Unicode version

Theorem xpnnen 12074
Description: The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
xpnnen  |-  ( NN 
X.  NN )  ~~  NN

Proof of Theorem xpnnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2154 . . . 4  |-  { z  e.  NN  |  -.  2  ||  z }  =  { z  e.  NN  |  -.  2  ||  z }
2 eqid 2154 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z } ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )  =  ( x  e. 
{ z  e.  NN  |  -.  2  ||  z } ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
31, 2oddpwdc 12019 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z } ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) ) : ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 ) -1-1-onto-> NN
4 f1ocnv 5420 . . 3  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z } , 
y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) ) : ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 ) -1-1-onto-> NN  ->  `' (
x  e.  { z  e.  NN  |  -.  2  ||  z } , 
y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) ) : NN -1-1-onto-> ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 ) )
5 nnex 8818 . . . 4  |-  NN  e.  _V
65f1oen 6693 . . 3  |-  ( `' ( x  e.  {
z  e.  NN  |  -.  2  ||  z } ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) ) : NN -1-1-onto-> ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 )  ->  NN  ~~  ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 ) )
73, 4, 6mp2b 8 . 2  |-  NN  ~~  ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 )
8 oddennn 12072 . . 3  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN
9 nn0ennn 10310 . . 3  |-  NN0  ~~  NN
10 xpen 6779 . . 3  |-  ( ( { z  e.  NN  |  -.  2  ||  z }  ~~  NN  /\  NN0  ~~  NN )  ->  ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 )  ~~  ( NN  X.  NN ) )
118, 9, 10mp2an 423 . 2  |-  ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 )  ~~  ( NN  X.  NN )
127, 11entr2i 6721 1  |-  ( NN 
X.  NN )  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3   {crab 2436   class class class wbr 3961    X. cxp 4577   `'ccnv 4578   -1-1-onto->wf1o 5162  (class class class)co 5814    e. cmpo 5816    ~~ cen 6672    x. cmul 7716   NNcn 8812   2c2 8863   NN0cn0 9069   ^cexp 10396    || cdvds 11660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-er 6469  df-en 6675  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fz 9891  df-fl 10147  df-mod 10200  df-seqfrec 10323  df-exp 10397  df-dvds 11661
This theorem is referenced by:  xpomen  12075  qnnen  12111
  Copyright terms: Public domain W3C validator