ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpnnen Unicode version

Theorem xpnnen 12412
Description: The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
xpnnen  |-  ( NN 
X.  NN )  ~~  NN

Proof of Theorem xpnnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2188 . . . 4  |-  { z  e.  NN  |  -.  2  ||  z }  =  { z  e.  NN  |  -.  2  ||  z }
2 eqid 2188 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z } ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )  =  ( x  e. 
{ z  e.  NN  |  -.  2  ||  z } ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
31, 2oddpwdc 12191 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z } ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) ) : ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 ) -1-1-onto-> NN
4 f1ocnv 5488 . . 3  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z } , 
y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) ) : ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 ) -1-1-onto-> NN  ->  `' (
x  e.  { z  e.  NN  |  -.  2  ||  z } , 
y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) ) : NN -1-1-onto-> ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 ) )
5 nnex 8942 . . . 4  |-  NN  e.  _V
65f1oen 6776 . . 3  |-  ( `' ( x  e.  {
z  e.  NN  |  -.  2  ||  z } ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) ) : NN -1-1-onto-> ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 )  ->  NN  ~~  ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 ) )
73, 4, 6mp2b 8 . 2  |-  NN  ~~  ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 )
8 oddennn 12410 . . 3  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN
9 nn0ennn 10450 . . 3  |-  NN0  ~~  NN
10 xpen 6862 . . 3  |-  ( ( { z  e.  NN  |  -.  2  ||  z }  ~~  NN  /\  NN0  ~~  NN )  ->  ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 )  ~~  ( NN  X.  NN ) )
118, 9, 10mp2an 426 . 2  |-  ( { z  e.  NN  |  -.  2  ||  z }  X.  NN0 )  ~~  ( NN  X.  NN )
127, 11entr2i 6804 1  |-  ( NN 
X.  NN )  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3   {crab 2471   class class class wbr 4017    X. cxp 4638   `'ccnv 4639   -1-1-onto->wf1o 5229  (class class class)co 5890    e. cmpo 5892    ~~ cen 6755    x. cmul 7833   NNcn 8936   2c2 8987   NN0cn0 9193   ^cexp 10536    || cdvds 11811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulrcl 7927  ax-addcom 7928  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-1rid 7935  ax-0id 7936  ax-rnegex 7937  ax-precex 7938  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-apti 7943  ax-pre-ltadd 7944  ax-pre-mulgt0 7945  ax-pre-mulext 7946  ax-arch 7947
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-xor 1386  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-if 3549  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-ilim 4383  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-frec 6409  df-er 6552  df-en 6758  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-reap 8549  df-ap 8556  df-div 8647  df-inn 8937  df-2 8995  df-n0 9194  df-z 9271  df-uz 9546  df-q 9637  df-rp 9671  df-fz 10026  df-fl 10287  df-mod 10340  df-seqfrec 10463  df-exp 10537  df-dvds 11812
This theorem is referenced by:  xpomen  12413  qnnen  12449
  Copyright terms: Public domain W3C validator