ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov2 Unicode version

Theorem eqfnov2 6027
Description: Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
eqfnov2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Distinct variable groups:    x, A, y   
x, B, y    x, F, y    x, G, y

Proof of Theorem eqfnov2
StepHypRef Expression
1 eqfnov 6026 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
2 simpr 110 . . 3  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  ->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
3 eqidd 2194 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  ( A  X.  B )  =  ( A  X.  B
) )
43ancri 324 . . 3  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  (
( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) ) )
52, 4impbii 126 . 2  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
61, 5bitrdi 196 1  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2472    X. cxp 4658    Fn wfn 5250  (class class class)co 5919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922
This theorem is referenced by:  fnmpoovd  6270  tpossym  6331
  Copyright terms: Public domain W3C validator