ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov2 Unicode version

Theorem eqfnov2 5949
Description: Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
eqfnov2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Distinct variable groups:    x, A, y   
x, B, y    x, F, y    x, G, y

Proof of Theorem eqfnov2
StepHypRef Expression
1 eqfnov 5948 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
2 simpr 109 . . 3  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  ->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
3 eqidd 2166 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  ( A  X.  B )  =  ( A  X.  B
) )
43ancri 322 . . 3  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  (
( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) ) )
52, 4impbii 125 . 2  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
61, 5bitrdi 195 1  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   A.wral 2444    X. cxp 4602    Fn wfn 5183  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ov 5845
This theorem is referenced by:  fnmpoovd  6183  tpossym  6244
  Copyright terms: Public domain W3C validator