ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov2 Unicode version

Theorem eqfnov2 6030
Description: Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
eqfnov2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Distinct variable groups:    x, A, y   
x, B, y    x, F, y    x, G, y

Proof of Theorem eqfnov2
StepHypRef Expression
1 eqfnov 6029 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
2 simpr 110 . . 3  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  ->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
3 eqidd 2197 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  ( A  X.  B )  =  ( A  X.  B
) )
43ancri 324 . . 3  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  (
( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) ) )
52, 4impbii 126 . 2  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
61, 5bitrdi 196 1  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2475    X. cxp 4661    Fn wfn 5253  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925
This theorem is referenced by:  fnmpoovd  6273  tpossym  6334
  Copyright terms: Public domain W3C validator