ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov2 Unicode version

Theorem eqfnov2 6112
Description: Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
eqfnov2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Distinct variable groups:    x, A, y   
x, B, y    x, F, y    x, G, y

Proof of Theorem eqfnov2
StepHypRef Expression
1 eqfnov 6111 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
2 simpr 110 . . 3  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  ->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
3 eqidd 2230 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  ( A  X.  B )  =  ( A  X.  B
) )
43ancri 324 . . 3  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  (
( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) ) )
52, 4impbii 126 . 2  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
61, 5bitrdi 196 1  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   A.wral 2508    X. cxp 4717    Fn wfn 5313  (class class class)co 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004
This theorem is referenced by:  fnmpoovd  6361  tpossym  6422
  Copyright terms: Public domain W3C validator