ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov2 Unicode version

Theorem eqfnov2 5984
Description: Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
eqfnov2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Distinct variable groups:    x, A, y   
x, B, y    x, F, y    x, G, y

Proof of Theorem eqfnov2
StepHypRef Expression
1 eqfnov 5983 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
2 simpr 110 . . 3  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  ->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
3 eqidd 2178 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  ( A  X.  B )  =  ( A  X.  B
) )
43ancri 324 . . 3  |-  ( A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y )  ->  (
( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) ) )
52, 4impbii 126 . 2  |-  ( ( ( A  X.  B
)  =  ( A  X.  B )  /\  A. x  e.  A  A. y  e.  B  (
x F y )  =  ( x G y ) )  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
61, 5bitrdi 196 1  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( A  X.  B ) )  -> 
( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   A.wral 2455    X. cxp 4626    Fn wfn 5213  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880
This theorem is referenced by:  fnmpoovd  6218  tpossym  6279
  Copyright terms: Public domain W3C validator