ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovim Unicode version

Theorem fnovim 6031
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 16-Jan-2019.)
Assertion
Ref Expression
fnovim  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem fnovim
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5606 . 2  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( z  e.  ( A  X.  B
)  |->  ( F `  z ) ) )
2 fveq2 5558 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5925 . . . . 5  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2247 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( x F y ) )
54mpompt 6014 . . 3  |-  ( z  e.  ( A  X.  B )  |->  ( F `
 z ) )  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) )
65eqeq2i 2207 . 2  |-  ( F  =  ( z  e.  ( A  X.  B
)  |->  ( F `  z ) )  <->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
71, 6sylib 122 1  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3625    |-> cmpt 4094    X. cxp 4661    Fn wfn 5253   ` cfv 5258  (class class class)co 5922    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  mapxpen  6909  dfioo2  10049  plusfeqg  13007  scafeqg  13864  cnfldadd  14118  cnfldmul  14120  cnfldsub  14131  cnmpt22f  14531  cnmptcom  14534  bdxmet  14737
  Copyright terms: Public domain W3C validator