ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovim Unicode version

Theorem fnovim 6027
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 16-Jan-2019.)
Assertion
Ref Expression
fnovim  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem fnovim
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5602 . 2  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( z  e.  ( A  X.  B
)  |->  ( F `  z ) ) )
2 fveq2 5554 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5921 . . . . 5  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2244 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( x F y ) )
54mpompt 6010 . . 3  |-  ( z  e.  ( A  X.  B )  |->  ( F `
 z ) )  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) )
65eqeq2i 2204 . 2  |-  ( F  =  ( z  e.  ( A  X.  B
)  |->  ( F `  z ) )  <->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
71, 6sylib 122 1  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3621    |-> cmpt 4090    X. cxp 4657    Fn wfn 5249   ` cfv 5254  (class class class)co 5918    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923
This theorem is referenced by:  mapxpen  6904  dfioo2  10040  plusfeqg  12947  scafeqg  13804  mpocnfldadd  14053  mpocnfldmul  14055  cnfldsub  14063  cnmpt22f  14463  cnmptcom  14466  bdxmet  14669
  Copyright terms: Public domain W3C validator