ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovim Unicode version

Theorem fnovim 5950
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 16-Jan-2019.)
Assertion
Ref Expression
fnovim  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem fnovim
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5532 . 2  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( z  e.  ( A  X.  B
)  |->  ( F `  z ) ) )
2 fveq2 5486 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5845 . . . . 5  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2217 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( x F y ) )
54mpompt 5934 . . 3  |-  ( z  e.  ( A  X.  B )  |->  ( F `
 z ) )  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) )
65eqeq2i 2176 . 2  |-  ( F  =  ( z  e.  ( A  X.  B
)  |->  ( F `  z ) )  <->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
71, 6sylib 121 1  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   <.cop 3579    |-> cmpt 4043    X. cxp 4602    Fn wfn 5183   ` cfv 5188  (class class class)co 5842    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  mapxpen  6814  dfioo2  9910  plusfeqg  12595  cnmpt22f  12935  cnmptcom  12938  bdxmet  13141
  Copyright terms: Public domain W3C validator