ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovim Unicode version

Theorem fnovim 6061
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 16-Jan-2019.)
Assertion
Ref Expression
fnovim  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem fnovim
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5631 . 2  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( z  e.  ( A  X.  B
)  |->  ( F `  z ) ) )
2 fveq2 5583 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5954 . . . . 5  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2257 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( x F y ) )
54mpompt 6044 . . 3  |-  ( z  e.  ( A  X.  B )  |->  ( F `
 z ) )  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) )
65eqeq2i 2217 . 2  |-  ( F  =  ( z  e.  ( A  X.  B
)  |->  ( F `  z ) )  <->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
71, 6sylib 122 1  |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   <.cop 3637    |-> cmpt 4109    X. cxp 4677    Fn wfn 5271   ` cfv 5276  (class class class)co 5951    e. cmpo 5953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956
This theorem is referenced by:  mapxpen  6952  dfioo2  10103  plusfeqg  13240  scafeqg  14114  cnfldadd  14368  cnfldmul  14370  cnfldsub  14381  cnmpt22f  14811  cnmptcom  14814  bdxmet  15017
  Copyright terms: Public domain W3C validator