ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqlei2 Unicode version

Theorem eqlei2 7865
Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
Hypothesis
Ref Expression
lt.1  |-  A  e.  RR
Assertion
Ref Expression
eqlei2  |-  ( B  =  A  ->  B  <_  A )

Proof of Theorem eqlei2
StepHypRef Expression
1 lt.1 . . 3  |-  A  e.  RR
2 eleq1 2202 . . 3  |-  ( B  =  A  ->  ( B  e.  RR  <->  A  e.  RR ) )
31, 2mpbiri 167 . 2  |-  ( B  =  A  ->  B  e.  RR )
4 eqle 7862 . 2  |-  ( ( B  e.  RR  /\  B  =  A )  ->  B  <_  A )
53, 4mpancom 418 1  |-  ( B  =  A  ->  B  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   class class class wbr 3929   RRcr 7626    <_ cle 7808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-pre-ltirr 7739
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813
This theorem is referenced by:  sup3exmid  8722
  Copyright terms: Public domain W3C validator