ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtneii Unicode version

Theorem gtneii 8124
Description: 'Less than' implies not equal. See also gtapii 8663 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
ltneii.2  |-  A  < 
B
Assertion
Ref Expression
gtneii  |-  B  =/= 
A

Proof of Theorem gtneii
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 ltneii.2 . 2  |-  A  < 
B
3 ltne 8113 . 2  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
41, 2, 3mp2an 426 1  |-  B  =/= 
A
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    =/= wne 2367   class class class wbr 4034   RRcr 7880    < clt 8063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-pre-ltirr 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-pnf 8065  df-mnf 8066  df-ltxr 8068
This theorem is referenced by:  ltneii  8125  ine0  8422  fztpval  10160  ene1  11952  3lcm2e6  12338  starvndxnbasendx  12829  starvndxnplusgndx  12830  starvndxnmulrndx  12831  scandxnbasendx  12841  scandxnplusgndx  12842  scandxnmulrndx  12843  vscandxnbasendx  12846  vscandxnplusgndx  12847  vscandxnmulrndx  12848  vscandxnscandx  12849  ipndxnbasendx  12859  ipndxnplusgndx  12860  ipndxnmulrndx  12861  tsetndxnbasendx  12878  tsetndxnplusgndx  12879  tsetndxnmulrndx  12880  tsetndxnstarvndx  12881  slotstnscsi  12882  plendxnbasendx  12892  plendxnplusgndx  12893  plendxnmulrndx  12894  plendxnscandx  12895  plendxnvscandx  12896  dsndxnbasendx  12903  dsndxnplusgndx  12904  dsndxnmulrndx  12905  slotsdnscsi  12906  dsndxntsetndx  12907  unifndxnbasendx  12913  unifndxntsetndx  12914  setsmsdsg  14726  2logb9irr  15217  2logb3irr  15219  2logb9irrap  15223
  Copyright terms: Public domain W3C validator