ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtneii Unicode version

Theorem gtneii 8168
Description: 'Less than' implies not equal. See also gtapii 8707 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
ltneii.2  |-  A  < 
B
Assertion
Ref Expression
gtneii  |-  B  =/= 
A

Proof of Theorem gtneii
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 ltneii.2 . 2  |-  A  < 
B
3 ltne 8157 . 2  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
41, 2, 3mp2an 426 1  |-  B  =/= 
A
Colors of variables: wff set class
Syntax hints:    e. wcel 2176    =/= wne 2376   class class class wbr 4044   RRcr 7924    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-mnf 8110  df-ltxr 8112
This theorem is referenced by:  ltneii  8169  ine0  8466  fztpval  10205  ene1  12096  3lcm2e6  12482  starvndxnbasendx  12974  starvndxnplusgndx  12975  starvndxnmulrndx  12976  scandxnbasendx  12986  scandxnplusgndx  12987  scandxnmulrndx  12988  vscandxnbasendx  12991  vscandxnplusgndx  12992  vscandxnmulrndx  12993  vscandxnscandx  12994  ipndxnbasendx  13004  ipndxnplusgndx  13005  ipndxnmulrndx  13006  tsetndxnbasendx  13023  tsetndxnplusgndx  13024  tsetndxnmulrndx  13025  tsetndxnstarvndx  13026  slotstnscsi  13027  plendxnbasendx  13037  plendxnplusgndx  13038  plendxnmulrndx  13039  plendxnscandx  13040  plendxnvscandx  13041  dsndxnbasendx  13052  dsndxnplusgndx  13053  dsndxnmulrndx  13054  slotsdnscsi  13055  dsndxntsetndx  13056  unifndxnbasendx  13062  unifndxntsetndx  13063  setsmsdsg  14952  2logb9irr  15443  2logb3irr  15445  2logb9irrap  15449
  Copyright terms: Public domain W3C validator