ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtneii Unicode version

Theorem gtneii 8139
Description: 'Less than' implies not equal. See also gtapii 8678 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
ltneii.2  |-  A  < 
B
Assertion
Ref Expression
gtneii  |-  B  =/= 
A

Proof of Theorem gtneii
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 ltneii.2 . 2  |-  A  < 
B
3 ltne 8128 . 2  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
41, 2, 3mp2an 426 1  |-  B  =/= 
A
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    =/= wne 2367   class class class wbr 4034   RRcr 7895    < clt 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-pnf 8080  df-mnf 8081  df-ltxr 8083
This theorem is referenced by:  ltneii  8140  ine0  8437  fztpval  10175  ene1  11967  3lcm2e6  12353  starvndxnbasendx  12844  starvndxnplusgndx  12845  starvndxnmulrndx  12846  scandxnbasendx  12856  scandxnplusgndx  12857  scandxnmulrndx  12858  vscandxnbasendx  12861  vscandxnplusgndx  12862  vscandxnmulrndx  12863  vscandxnscandx  12864  ipndxnbasendx  12874  ipndxnplusgndx  12875  ipndxnmulrndx  12876  tsetndxnbasendx  12893  tsetndxnplusgndx  12894  tsetndxnmulrndx  12895  tsetndxnstarvndx  12896  slotstnscsi  12897  plendxnbasendx  12907  plendxnplusgndx  12908  plendxnmulrndx  12909  plendxnscandx  12910  plendxnvscandx  12911  dsndxnbasendx  12922  dsndxnplusgndx  12923  dsndxnmulrndx  12924  slotsdnscsi  12925  dsndxntsetndx  12926  unifndxnbasendx  12932  unifndxntsetndx  12933  setsmsdsg  14800  2logb9irr  15291  2logb3irr  15293  2logb9irrap  15297
  Copyright terms: Public domain W3C validator