ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtneii Unicode version

Theorem gtneii 8203
Description: 'Less than' implies not equal. See also gtapii 8742 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
ltneii.2  |-  A  < 
B
Assertion
Ref Expression
gtneii  |-  B  =/= 
A

Proof of Theorem gtneii
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 ltneii.2 . 2  |-  A  < 
B
3 ltne 8192 . 2  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
41, 2, 3mp2an 426 1  |-  B  =/= 
A
Colors of variables: wff set class
Syntax hints:    e. wcel 2178    =/= wne 2378   class class class wbr 4059   RRcr 7959    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-mnf 8145  df-ltxr 8147
This theorem is referenced by:  ltneii  8204  ine0  8501  fztpval  10240  ene1  12211  3lcm2e6  12597  starvndxnbasendx  13089  starvndxnplusgndx  13090  starvndxnmulrndx  13091  scandxnbasendx  13101  scandxnplusgndx  13102  scandxnmulrndx  13103  vscandxnbasendx  13106  vscandxnplusgndx  13107  vscandxnmulrndx  13108  vscandxnscandx  13109  ipndxnbasendx  13119  ipndxnplusgndx  13120  ipndxnmulrndx  13121  tsetndxnbasendx  13138  tsetndxnplusgndx  13139  tsetndxnmulrndx  13140  tsetndxnstarvndx  13141  slotstnscsi  13142  plendxnbasendx  13152  plendxnplusgndx  13153  plendxnmulrndx  13154  plendxnscandx  13155  plendxnvscandx  13156  dsndxnbasendx  13167  dsndxnplusgndx  13168  dsndxnmulrndx  13169  slotsdnscsi  13170  dsndxntsetndx  13171  unifndxnbasendx  13177  unifndxntsetndx  13178  setsmsdsg  15067  2logb9irr  15558  2logb3irr  15560  2logb9irrap  15564
  Copyright terms: Public domain W3C validator