ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtneii Unicode version

Theorem gtneii 8170
Description: 'Less than' implies not equal. See also gtapii 8709 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
ltneii.2  |-  A  < 
B
Assertion
Ref Expression
gtneii  |-  B  =/= 
A

Proof of Theorem gtneii
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 ltneii.2 . 2  |-  A  < 
B
3 ltne 8159 . 2  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
41, 2, 3mp2an 426 1  |-  B  =/= 
A
Colors of variables: wff set class
Syntax hints:    e. wcel 2176    =/= wne 2376   class class class wbr 4045   RRcr 7926    < clt 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-ltirr 8039
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-pnf 8111  df-mnf 8112  df-ltxr 8114
This theorem is referenced by:  ltneii  8171  ine0  8468  fztpval  10207  ene1  12129  3lcm2e6  12515  starvndxnbasendx  13007  starvndxnplusgndx  13008  starvndxnmulrndx  13009  scandxnbasendx  13019  scandxnplusgndx  13020  scandxnmulrndx  13021  vscandxnbasendx  13024  vscandxnplusgndx  13025  vscandxnmulrndx  13026  vscandxnscandx  13027  ipndxnbasendx  13037  ipndxnplusgndx  13038  ipndxnmulrndx  13039  tsetndxnbasendx  13056  tsetndxnplusgndx  13057  tsetndxnmulrndx  13058  tsetndxnstarvndx  13059  slotstnscsi  13060  plendxnbasendx  13070  plendxnplusgndx  13071  plendxnmulrndx  13072  plendxnscandx  13073  plendxnvscandx  13074  dsndxnbasendx  13085  dsndxnplusgndx  13086  dsndxnmulrndx  13087  slotsdnscsi  13088  dsndxntsetndx  13089  unifndxnbasendx  13095  unifndxntsetndx  13096  setsmsdsg  14985  2logb9irr  15476  2logb3irr  15478  2logb9irrap  15482
  Copyright terms: Public domain W3C validator