ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtneii Unicode version

Theorem gtneii 8055
Description: 'Less than' implies not equal. See also gtapii 8593 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
ltneii.2  |-  A  < 
B
Assertion
Ref Expression
gtneii  |-  B  =/= 
A

Proof of Theorem gtneii
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 ltneii.2 . 2  |-  A  < 
B
3 ltne 8044 . 2  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
41, 2, 3mp2an 426 1  |-  B  =/= 
A
Colors of variables: wff set class
Syntax hints:    e. wcel 2148    =/= wne 2347   class class class wbr 4005   RRcr 7812    < clt 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-pnf 7996  df-mnf 7997  df-ltxr 7999
This theorem is referenced by:  ltneii  8056  ine0  8353  fztpval  10085  ene1  11794  3lcm2e6  12162  starvndxnbasendx  12602  starvndxnplusgndx  12603  starvndxnmulrndx  12604  scandxnbasendx  12614  scandxnplusgndx  12615  scandxnmulrndx  12616  vscandxnbasendx  12619  vscandxnplusgndx  12620  vscandxnmulrndx  12621  vscandxnscandx  12622  ipndxnbasendx  12632  ipndxnplusgndx  12633  ipndxnmulrndx  12634  tsetndxnbasendx  12651  tsetndxnplusgndx  12652  tsetndxnmulrndx  12653  tsetndxnstarvndx  12654  slotstnscsi  12655  plendxnbasendx  12665  plendxnplusgndx  12666  plendxnmulrndx  12667  plendxnscandx  12668  plendxnvscandx  12669  dsndxnbasendx  12676  dsndxnplusgndx  12677  dsndxnmulrndx  12678  slotsdnscsi  12679  dsndxntsetndx  12680  unifndxnbasendx  12686  unifndxntsetndx  12687  setsmsdsg  14065  2logb9irr  14474  2logb3irr  14476  2logb9irrap  14480
  Copyright terms: Public domain W3C validator