ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqlei2 GIF version

Theorem eqlei2 8182
Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
Hypothesis
Ref Expression
lt.1 𝐴 ∈ ℝ
Assertion
Ref Expression
eqlei2 (𝐵 = 𝐴𝐵𝐴)

Proof of Theorem eqlei2
StepHypRef Expression
1 lt.1 . . 3 𝐴 ∈ ℝ
2 eleq1 2269 . . 3 (𝐵 = 𝐴 → (𝐵 ∈ ℝ ↔ 𝐴 ∈ ℝ))
31, 2mpbiri 168 . 2 (𝐵 = 𝐴𝐵 ∈ ℝ)
4 eqle 8179 . 2 ((𝐵 ∈ ℝ ∧ 𝐵 = 𝐴) → 𝐵𝐴)
53, 4mpancom 422 1 (𝐵 = 𝐴𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177   class class class wbr 4050  cr 7939  cle 8123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-pre-ltirr 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-xp 4688  df-cnv 4690  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128
This theorem is referenced by:  sup3exmid  9045
  Copyright terms: Public domain W3C validator