ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0bi Unicode version

Theorem f0bi 5400
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
f0bi  |-  ( F : (/) --> X  <->  F  =  (/) )

Proof of Theorem f0bi
StepHypRef Expression
1 ffn 5357 . . 3  |-  ( F : (/) --> X  ->  F  Fn  (/) )
2 fn0 5327 . . 3  |-  ( F  Fn  (/)  <->  F  =  (/) )
31, 2sylib 122 . 2  |-  ( F : (/) --> X  ->  F  =  (/) )
4 f0 5398 . . 3  |-  (/) : (/) --> X
5 feq1 5340 . . 3  |-  ( F  =  (/)  ->  ( F : (/) --> X  <->  (/) : (/) --> X ) )
64, 5mpbiri 168 . 2  |-  ( F  =  (/)  ->  F : (/) --> X )
73, 6impbii 126 1  |-  ( F : (/) --> X  <->  F  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   (/)c0 3420    Fn wfn 5203   -->wf 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212
This theorem is referenced by:  f0dom0  5401  mapdm0  6653  map0e  6676
  Copyright terms: Public domain W3C validator