ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0bi Unicode version

Theorem f0bi 5273
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
f0bi  |-  ( F : (/) --> X  <->  F  =  (/) )

Proof of Theorem f0bi
StepHypRef Expression
1 ffn 5230 . . 3  |-  ( F : (/) --> X  ->  F  Fn  (/) )
2 fn0 5200 . . 3  |-  ( F  Fn  (/)  <->  F  =  (/) )
31, 2sylib 121 . 2  |-  ( F : (/) --> X  ->  F  =  (/) )
4 f0 5271 . . 3  |-  (/) : (/) --> X
5 feq1 5213 . . 3  |-  ( F  =  (/)  ->  ( F : (/) --> X  <->  (/) : (/) --> X ) )
64, 5mpbiri 167 . 2  |-  ( F  =  (/)  ->  F : (/) --> X )
73, 6impbii 125 1  |-  ( F : (/) --> X  <->  F  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1314   (/)c0 3329    Fn wfn 5076   -->wf 5077
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-fun 5083  df-fn 5084  df-f 5085
This theorem is referenced by:  f0dom0  5274  mapdm0  6511  map0e  6534
  Copyright terms: Public domain W3C validator