ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0bi Unicode version

Theorem f0bi 5470
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
f0bi  |-  ( F : (/) --> X  <->  F  =  (/) )

Proof of Theorem f0bi
StepHypRef Expression
1 ffn 5427 . . 3  |-  ( F : (/) --> X  ->  F  Fn  (/) )
2 fn0 5397 . . 3  |-  ( F  Fn  (/)  <->  F  =  (/) )
31, 2sylib 122 . 2  |-  ( F : (/) --> X  ->  F  =  (/) )
4 f0 5468 . . 3  |-  (/) : (/) --> X
5 feq1 5410 . . 3  |-  ( F  =  (/)  ->  ( F : (/) --> X  <->  (/) : (/) --> X ) )
64, 5mpbiri 168 . 2  |-  ( F  =  (/)  ->  F : (/) --> X )
73, 6impbii 126 1  |-  ( F : (/) --> X  <->  F  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   (/)c0 3460    Fn wfn 5267   -->wf 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-fun 5274  df-fn 5275  df-f 5276
This theorem is referenced by:  f0dom0  5471  mapdm0  6752  map0e  6775
  Copyright terms: Public domain W3C validator