ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0bi GIF version

Theorem f0bi 5427
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
f0bi (𝐹:∅⟶𝑋𝐹 = ∅)

Proof of Theorem f0bi
StepHypRef Expression
1 ffn 5384 . . 3 (𝐹:∅⟶𝑋𝐹 Fn ∅)
2 fn0 5354 . . 3 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
31, 2sylib 122 . 2 (𝐹:∅⟶𝑋𝐹 = ∅)
4 f0 5425 . . 3 ∅:∅⟶𝑋
5 feq1 5367 . . 3 (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋))
64, 5mpbiri 168 . 2 (𝐹 = ∅ → 𝐹:∅⟶𝑋)
73, 6impbii 126 1 (𝐹:∅⟶𝑋𝐹 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  c0 3437   Fn wfn 5230  wf 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-fun 5237  df-fn 5238  df-f 5239
This theorem is referenced by:  f0dom0  5428  mapdm0  6690  map0e  6713
  Copyright terms: Public domain W3C validator