ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f00 Unicode version

Theorem f00 5379
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f00
StepHypRef Expression
1 ffun 5340 . . . . 5  |-  ( F : A --> (/)  ->  Fun  F )
2 frn 5346 . . . . . . 7  |-  ( F : A --> (/)  ->  ran  F 
C_  (/) )
3 ss0 3449 . . . . . . 7  |-  ( ran 
F  C_  (/)  ->  ran  F  =  (/) )
42, 3syl 14 . . . . . 6  |-  ( F : A --> (/)  ->  ran  F  =  (/) )
5 dm0rn0 4821 . . . . . 6  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
64, 5sylibr 133 . . . . 5  |-  ( F : A --> (/)  ->  dom  F  =  (/) )
7 df-fn 5191 . . . . 5  |-  ( F  Fn  (/)  <->  ( Fun  F  /\  dom  F  =  (/) ) )
81, 6, 7sylanbrc 414 . . . 4  |-  ( F : A --> (/)  ->  F  Fn  (/) )
9 fn0 5307 . . . 4  |-  ( F  Fn  (/)  <->  F  =  (/) )
108, 9sylib 121 . . 3  |-  ( F : A --> (/)  ->  F  =  (/) )
11 fdm 5343 . . . 4  |-  ( F : A --> (/)  ->  dom  F  =  A )
1211, 6eqtr3d 2200 . . 3  |-  ( F : A --> (/)  ->  A  =  (/) )
1310, 12jca 304 . 2  |-  ( F : A --> (/)  ->  ( F  =  (/)  /\  A  =  (/) ) )
14 f0 5378 . . 3  |-  (/) : (/) --> (/)
15 feq1 5320 . . . 4  |-  ( F  =  (/)  ->  ( F : A --> (/)  <->  (/) : A --> (/) ) )
16 feq2 5321 . . . 4  |-  ( A  =  (/)  ->  ( (/) : A --> (/)  <->  (/) : (/) --> (/) ) )
1715, 16sylan9bb 458 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F : A --> (/)  <->  (/) : (/) --> (/) ) )
1814, 17mpbiri 167 . 2  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F : A --> (/) )
1913, 18impbii 125 1  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    C_ wss 3116   (/)c0 3409   dom cdm 4604   ran crn 4605   Fun wfun 5182    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  dom0  6804
  Copyright terms: Public domain W3C validator