ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f00 Unicode version

Theorem f00 5387
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f00
StepHypRef Expression
1 ffun 5348 . . . . 5  |-  ( F : A --> (/)  ->  Fun  F )
2 frn 5354 . . . . . . 7  |-  ( F : A --> (/)  ->  ran  F 
C_  (/) )
3 ss0 3454 . . . . . . 7  |-  ( ran 
F  C_  (/)  ->  ran  F  =  (/) )
42, 3syl 14 . . . . . 6  |-  ( F : A --> (/)  ->  ran  F  =  (/) )
5 dm0rn0 4826 . . . . . 6  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
64, 5sylibr 133 . . . . 5  |-  ( F : A --> (/)  ->  dom  F  =  (/) )
7 df-fn 5199 . . . . 5  |-  ( F  Fn  (/)  <->  ( Fun  F  /\  dom  F  =  (/) ) )
81, 6, 7sylanbrc 415 . . . 4  |-  ( F : A --> (/)  ->  F  Fn  (/) )
9 fn0 5315 . . . 4  |-  ( F  Fn  (/)  <->  F  =  (/) )
108, 9sylib 121 . . 3  |-  ( F : A --> (/)  ->  F  =  (/) )
11 fdm 5351 . . . 4  |-  ( F : A --> (/)  ->  dom  F  =  A )
1211, 6eqtr3d 2205 . . 3  |-  ( F : A --> (/)  ->  A  =  (/) )
1310, 12jca 304 . 2  |-  ( F : A --> (/)  ->  ( F  =  (/)  /\  A  =  (/) ) )
14 f0 5386 . . 3  |-  (/) : (/) --> (/)
15 feq1 5328 . . . 4  |-  ( F  =  (/)  ->  ( F : A --> (/)  <->  (/) : A --> (/) ) )
16 feq2 5329 . . . 4  |-  ( A  =  (/)  ->  ( (/) : A --> (/)  <->  (/) : (/) --> (/) ) )
1715, 16sylan9bb 459 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F : A --> (/)  <->  (/) : (/) --> (/) ) )
1814, 17mpbiri 167 . 2  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F : A --> (/) )
1913, 18impbii 125 1  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348    C_ wss 3121   (/)c0 3414   dom cdm 4609   ran crn 4610   Fun wfun 5190    Fn wfn 5191   -->wf 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-fun 5198  df-fn 5199  df-f 5200
This theorem is referenced by:  dom0  6812
  Copyright terms: Public domain W3C validator