| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f00 | Unicode version | ||
| Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| f00 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 5476 |
. . . . 5
| |
| 2 | frn 5482 |
. . . . . . 7
| |
| 3 | ss0 3532 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 14 |
. . . . . 6
|
| 5 | dm0rn0 4940 |
. . . . . 6
| |
| 6 | 4, 5 | sylibr 134 |
. . . . 5
|
| 7 | df-fn 5321 |
. . . . 5
| |
| 8 | 1, 6, 7 | sylanbrc 417 |
. . . 4
|
| 9 | fn0 5443 |
. . . 4
| |
| 10 | 8, 9 | sylib 122 |
. . 3
|
| 11 | fdm 5479 |
. . . 4
| |
| 12 | 11, 6 | eqtr3d 2264 |
. . 3
|
| 13 | 10, 12 | jca 306 |
. 2
|
| 14 | f0 5516 |
. . 3
| |
| 15 | feq1 5456 |
. . . 4
| |
| 16 | feq2 5457 |
. . . 4
| |
| 17 | 15, 16 | sylan9bb 462 |
. . 3
|
| 18 | 14, 17 | mpbiri 168 |
. 2
|
| 19 | 13, 18 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 |
| This theorem is referenced by: dom0 6999 0wrd0 11097 uhgr0vb 15884 wlkv0 16080 |
| Copyright terms: Public domain | W3C validator |