ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f00 Unicode version

Theorem f00 5467
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f00
StepHypRef Expression
1 ffun 5428 . . . . 5  |-  ( F : A --> (/)  ->  Fun  F )
2 frn 5434 . . . . . . 7  |-  ( F : A --> (/)  ->  ran  F 
C_  (/) )
3 ss0 3501 . . . . . . 7  |-  ( ran 
F  C_  (/)  ->  ran  F  =  (/) )
42, 3syl 14 . . . . . 6  |-  ( F : A --> (/)  ->  ran  F  =  (/) )
5 dm0rn0 4895 . . . . . 6  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
64, 5sylibr 134 . . . . 5  |-  ( F : A --> (/)  ->  dom  F  =  (/) )
7 df-fn 5274 . . . . 5  |-  ( F  Fn  (/)  <->  ( Fun  F  /\  dom  F  =  (/) ) )
81, 6, 7sylanbrc 417 . . . 4  |-  ( F : A --> (/)  ->  F  Fn  (/) )
9 fn0 5395 . . . 4  |-  ( F  Fn  (/)  <->  F  =  (/) )
108, 9sylib 122 . . 3  |-  ( F : A --> (/)  ->  F  =  (/) )
11 fdm 5431 . . . 4  |-  ( F : A --> (/)  ->  dom  F  =  A )
1211, 6eqtr3d 2240 . . 3  |-  ( F : A --> (/)  ->  A  =  (/) )
1310, 12jca 306 . 2  |-  ( F : A --> (/)  ->  ( F  =  (/)  /\  A  =  (/) ) )
14 f0 5466 . . 3  |-  (/) : (/) --> (/)
15 feq1 5408 . . . 4  |-  ( F  =  (/)  ->  ( F : A --> (/)  <->  (/) : A --> (/) ) )
16 feq2 5409 . . . 4  |-  ( A  =  (/)  ->  ( (/) : A --> (/)  <->  (/) : (/) --> (/) ) )
1715, 16sylan9bb 462 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F : A --> (/)  <->  (/) : (/) --> (/) ) )
1814, 17mpbiri 168 . 2  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F : A --> (/) )
1913, 18impbii 126 1  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    C_ wss 3166   (/)c0 3460   dom cdm 4675   ran crn 4676   Fun wfun 5265    Fn wfn 5266   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275
This theorem is referenced by:  dom0  6935  0wrd0  11020
  Copyright terms: Public domain W3C validator