Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f00 | Unicode version |
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
f00 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 5348 | . . . . 5 | |
2 | frn 5354 | . . . . . . 7 | |
3 | ss0 3454 | . . . . . . 7 | |
4 | 2, 3 | syl 14 | . . . . . 6 |
5 | dm0rn0 4826 | . . . . . 6 | |
6 | 4, 5 | sylibr 133 | . . . . 5 |
7 | df-fn 5199 | . . . . 5 | |
8 | 1, 6, 7 | sylanbrc 415 | . . . 4 |
9 | fn0 5315 | . . . 4 | |
10 | 8, 9 | sylib 121 | . . 3 |
11 | fdm 5351 | . . . 4 | |
12 | 11, 6 | eqtr3d 2205 | . . 3 |
13 | 10, 12 | jca 304 | . 2 |
14 | f0 5386 | . . 3 | |
15 | feq1 5328 | . . . 4 | |
16 | feq2 5329 | . . . 4 | |
17 | 15, 16 | sylan9bb 459 | . . 3 |
18 | 14, 17 | mpbiri 167 | . 2 |
19 | 13, 18 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wss 3121 c0 3414 cdm 4609 crn 4610 wfun 5190 wfn 5191 wf 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-fun 5198 df-fn 5199 df-f 5200 |
This theorem is referenced by: dom0 6812 |
Copyright terms: Public domain | W3C validator |