ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f00 Unicode version

Theorem f00 5517
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f00
StepHypRef Expression
1 ffun 5476 . . . . 5  |-  ( F : A --> (/)  ->  Fun  F )
2 frn 5482 . . . . . . 7  |-  ( F : A --> (/)  ->  ran  F 
C_  (/) )
3 ss0 3532 . . . . . . 7  |-  ( ran 
F  C_  (/)  ->  ran  F  =  (/) )
42, 3syl 14 . . . . . 6  |-  ( F : A --> (/)  ->  ran  F  =  (/) )
5 dm0rn0 4940 . . . . . 6  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
64, 5sylibr 134 . . . . 5  |-  ( F : A --> (/)  ->  dom  F  =  (/) )
7 df-fn 5321 . . . . 5  |-  ( F  Fn  (/)  <->  ( Fun  F  /\  dom  F  =  (/) ) )
81, 6, 7sylanbrc 417 . . . 4  |-  ( F : A --> (/)  ->  F  Fn  (/) )
9 fn0 5443 . . . 4  |-  ( F  Fn  (/)  <->  F  =  (/) )
108, 9sylib 122 . . 3  |-  ( F : A --> (/)  ->  F  =  (/) )
11 fdm 5479 . . . 4  |-  ( F : A --> (/)  ->  dom  F  =  A )
1211, 6eqtr3d 2264 . . 3  |-  ( F : A --> (/)  ->  A  =  (/) )
1310, 12jca 306 . 2  |-  ( F : A --> (/)  ->  ( F  =  (/)  /\  A  =  (/) ) )
14 f0 5516 . . 3  |-  (/) : (/) --> (/)
15 feq1 5456 . . . 4  |-  ( F  =  (/)  ->  ( F : A --> (/)  <->  (/) : A --> (/) ) )
16 feq2 5457 . . . 4  |-  ( A  =  (/)  ->  ( (/) : A --> (/)  <->  (/) : (/) --> (/) ) )
1715, 16sylan9bb 462 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F : A --> (/)  <->  (/) : (/) --> (/) ) )
1814, 17mpbiri 168 . 2  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F : A --> (/) )
1913, 18impbii 126 1  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    C_ wss 3197   (/)c0 3491   dom cdm 4719   ran crn 4720   Fun wfun 5312    Fn wfn 5313   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  dom0  6999  0wrd0  11097  uhgr0vb  15884  wlkv0  16080
  Copyright terms: Public domain W3C validator