ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f00 Unicode version

Theorem f00 5446
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f00
StepHypRef Expression
1 ffun 5407 . . . . 5  |-  ( F : A --> (/)  ->  Fun  F )
2 frn 5413 . . . . . . 7  |-  ( F : A --> (/)  ->  ran  F 
C_  (/) )
3 ss0 3488 . . . . . . 7  |-  ( ran 
F  C_  (/)  ->  ran  F  =  (/) )
42, 3syl 14 . . . . . 6  |-  ( F : A --> (/)  ->  ran  F  =  (/) )
5 dm0rn0 4880 . . . . . 6  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
64, 5sylibr 134 . . . . 5  |-  ( F : A --> (/)  ->  dom  F  =  (/) )
7 df-fn 5258 . . . . 5  |-  ( F  Fn  (/)  <->  ( Fun  F  /\  dom  F  =  (/) ) )
81, 6, 7sylanbrc 417 . . . 4  |-  ( F : A --> (/)  ->  F  Fn  (/) )
9 fn0 5374 . . . 4  |-  ( F  Fn  (/)  <->  F  =  (/) )
108, 9sylib 122 . . 3  |-  ( F : A --> (/)  ->  F  =  (/) )
11 fdm 5410 . . . 4  |-  ( F : A --> (/)  ->  dom  F  =  A )
1211, 6eqtr3d 2228 . . 3  |-  ( F : A --> (/)  ->  A  =  (/) )
1310, 12jca 306 . 2  |-  ( F : A --> (/)  ->  ( F  =  (/)  /\  A  =  (/) ) )
14 f0 5445 . . 3  |-  (/) : (/) --> (/)
15 feq1 5387 . . . 4  |-  ( F  =  (/)  ->  ( F : A --> (/)  <->  (/) : A --> (/) ) )
16 feq2 5388 . . . 4  |-  ( A  =  (/)  ->  ( (/) : A --> (/)  <->  (/) : (/) --> (/) ) )
1715, 16sylan9bb 462 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F : A --> (/)  <->  (/) : (/) --> (/) ) )
1814, 17mpbiri 168 . 2  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F : A --> (/) )
1913, 18impbii 126 1  |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    C_ wss 3154   (/)c0 3447   dom cdm 4660   ran crn 4661   Fun wfun 5249    Fn wfn 5250   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  dom0  6896  0wrd0  10943
  Copyright terms: Public domain W3C validator