ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv1 Unicode version

Theorem f1ocnvfv1 5799
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )

Proof of Theorem f1ocnvfv1
StepHypRef Expression
1 f1ococnv1 5509 . . . 4  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
21fveq1d 5536 . . 3  |-  ( F : A -1-1-onto-> B  ->  ( ( `' F  o.  F
) `  C )  =  ( (  _I  |`  A ) `  C
) )
32adantr 276 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( (  _I  |`  A ) `  C ) )
4 f1of 5480 . . 3  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
5 fvco3 5608 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( `' F `  ( F `
 C ) ) )
64, 5sylan 283 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( `' F `  ( F `
 C ) ) )
7 fvresi 5730 . . 3  |-  ( C  e.  A  ->  (
(  _I  |`  A ) `
 C )  =  C )
87adantl 277 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( (  _I  |`  A ) `
 C )  =  C )
93, 6, 83eqtr3d 2230 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160    _I cid 4306   `'ccnv 4643    |` cres 4646    o. ccom 4648   -->wf 5231   -1-1-onto->wf1o 5234   ` cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243
This theorem is referenced by:  f1ocnvfv  5801  caseinl  7121  caseinr  7122  ctssdccl  7141  cc3  7298  iseqf1olemab  10522  cnrecnv  10954  fprodssdc  11633  ennnfonelemhf1o  12467  ennnfonelemex  12468  ennnfonelemrn  12473  ctinfomlemom  12481  ssnnctlemct  12500  mhmf1o  12937  isomninnlem  15257  iswomninnlem  15276  ismkvnnlem  15279
  Copyright terms: Public domain W3C validator