ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv1 Unicode version

Theorem f1ocnvfv1 5753
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )

Proof of Theorem f1ocnvfv1
StepHypRef Expression
1 f1ococnv1 5469 . . . 4  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
21fveq1d 5496 . . 3  |-  ( F : A -1-1-onto-> B  ->  ( ( `' F  o.  F
) `  C )  =  ( (  _I  |`  A ) `  C
) )
32adantr 274 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( (  _I  |`  A ) `  C ) )
4 f1of 5440 . . 3  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
5 fvco3 5565 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( `' F `  ( F `
 C ) ) )
64, 5sylan 281 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( `' F `  ( F `
 C ) ) )
7 fvresi 5686 . . 3  |-  ( C  e.  A  ->  (
(  _I  |`  A ) `
 C )  =  C )
87adantl 275 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( (  _I  |`  A ) `
 C )  =  C )
93, 6, 83eqtr3d 2211 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    _I cid 4271   `'ccnv 4608    |` cres 4611    o. ccom 4613   -->wf 5192   -1-1-onto->wf1o 5195   ` cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204
This theorem is referenced by:  f1ocnvfv  5755  caseinl  7064  caseinr  7065  ctssdccl  7084  cc3  7217  iseqf1olemab  10432  cnrecnv  10861  fprodssdc  11540  ennnfonelemhf1o  12355  ennnfonelemex  12356  ennnfonelemrn  12361  ctinfomlemom  12369  ssnnctlemct  12388  mhmf1o  12680  isomninnlem  14022  iswomninnlem  14041  ismkvnnlem  14044
  Copyright terms: Public domain W3C validator