ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv1 Unicode version

Theorem f1ocnvfv1 5848
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )

Proof of Theorem f1ocnvfv1
StepHypRef Expression
1 f1ococnv1 5553 . . . 4  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
21fveq1d 5580 . . 3  |-  ( F : A -1-1-onto-> B  ->  ( ( `' F  o.  F
) `  C )  =  ( (  _I  |`  A ) `  C
) )
32adantr 276 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( (  _I  |`  A ) `  C ) )
4 f1of 5524 . . 3  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
5 fvco3 5652 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( `' F `  ( F `
 C ) ) )
64, 5sylan 283 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( `' F `  ( F `
 C ) ) )
7 fvresi 5779 . . 3  |-  ( C  e.  A  ->  (
(  _I  |`  A ) `
 C )  =  C )
87adantl 277 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( (  _I  |`  A ) `
 C )  =  C )
93, 6, 83eqtr3d 2246 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    _I cid 4336   `'ccnv 4675    |` cres 4678    o. ccom 4680   -->wf 5268   -1-1-onto->wf1o 5271   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280
This theorem is referenced by:  f1ocnvfv  5850  caseinl  7195  caseinr  7196  ctssdccl  7215  cc3  7382  iseqf1olemab  10649  cnrecnv  11254  fprodssdc  11934  nninfctlemfo  12394  ennnfonelemhf1o  12817  ennnfonelemex  12818  ennnfonelemrn  12823  ctinfomlemom  12831  ssnnctlemct  12850  mhmf1o  13335  isomninnlem  16006  iswomninnlem  16025  ismkvnnlem  16028
  Copyright terms: Public domain W3C validator