Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ocnvfv1 | Unicode version |
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv1 5471 | . . . 4 | |
2 | 1 | fveq1d 5498 | . . 3 |
3 | 2 | adantr 274 | . 2 |
4 | f1of 5442 | . . 3 | |
5 | fvco3 5567 | . . 3 | |
6 | 4, 5 | sylan 281 | . 2 |
7 | fvresi 5689 | . . 3 | |
8 | 7 | adantl 275 | . 2 |
9 | 3, 6, 8 | 3eqtr3d 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cid 4273 ccnv 4610 cres 4613 ccom 4615 wf 5194 wf1o 5197 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: f1ocnvfv 5758 caseinl 7068 caseinr 7069 ctssdccl 7088 cc3 7230 iseqf1olemab 10445 cnrecnv 10874 fprodssdc 11553 ennnfonelemhf1o 12368 ennnfonelemex 12369 ennnfonelemrn 12374 ctinfomlemom 12382 ssnnctlemct 12401 mhmf1o 12693 isomninnlem 14062 iswomninnlem 14081 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |