Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ocnvfv1 | Unicode version |
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv1 5469 | . . . 4 | |
2 | 1 | fveq1d 5496 | . . 3 |
3 | 2 | adantr 274 | . 2 |
4 | f1of 5440 | . . 3 | |
5 | fvco3 5565 | . . 3 | |
6 | 4, 5 | sylan 281 | . 2 |
7 | fvresi 5686 | . . 3 | |
8 | 7 | adantl 275 | . 2 |
9 | 3, 6, 8 | 3eqtr3d 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cid 4271 ccnv 4608 cres 4611 ccom 4613 wf 5192 wf1o 5195 cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 |
This theorem is referenced by: f1ocnvfv 5755 caseinl 7064 caseinr 7065 ctssdccl 7084 cc3 7217 iseqf1olemab 10432 cnrecnv 10861 fprodssdc 11540 ennnfonelemhf1o 12355 ennnfonelemex 12356 ennnfonelemrn 12361 ctinfomlemom 12369 ssnnctlemct 12388 mhmf1o 12680 isomninnlem 14022 iswomninnlem 14041 ismkvnnlem 14044 |
Copyright terms: Public domain | W3C validator |