ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o Unicode version

Theorem mapsnf1o 6703
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
Assertion
Ref Expression
mapsnf1o  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I }
) )
Distinct variable groups:    x, I    x, A    x, V    x, W
Allowed substitution hint:    F( x)

Proof of Theorem mapsnf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . . . 4  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
21ixpsnf1o 6702 . . 3  |-  ( I  e.  W  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
32adantl 275 . 2  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> X_ y  e.  { I } A
)
4 snexg 4163 . . . 4  |-  ( I  e.  W  ->  { I }  e.  _V )
5 simpl 108 . . . 4  |-  ( ( A  e.  V  /\  I  e.  W )  ->  A  e.  V )
6 ixpconstg 6673 . . . . 5  |-  ( ( { I }  e.  _V  /\  A  e.  V
)  ->  X_ y  e. 
{ I } A  =  ( A  ^m  { I } ) )
76eqcomd 2171 . . . 4  |-  ( ( { I }  e.  _V  /\  A  e.  V
)  ->  ( A  ^m  { I } )  =  X_ y  e.  {
I } A )
84, 5, 7syl2an2 584 . . 3  |-  ( ( A  e.  V  /\  I  e.  W )  ->  ( A  ^m  {
I } )  = 
X_ y  e.  {
I } A )
9 f1oeq3 5423 . . 3  |-  ( ( A  ^m  { I } )  =  X_ y  e.  { I } A  ->  ( F : A -1-1-onto-> ( A  ^m  {
I } )  <->  F : A
-1-1-onto-> X_ y  e.  { I } A ) )
108, 9syl 14 . 2  |-  ( ( A  e.  V  /\  I  e.  W )  ->  ( F : A -1-1-onto-> ( A  ^m  { I }
)  <->  F : A -1-1-onto-> X_ y  e.  { I } A
) )
113, 10mpbird 166 1  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576    |-> cmpt 4043    X. cxp 4602   -1-1-onto->wf1o 5187  (class class class)co 5842    ^m cmap 6614   X_cixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-ixp 6665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator