ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o Unicode version

Theorem mapsnf1o 6791
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
Assertion
Ref Expression
mapsnf1o  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I }
) )
Distinct variable groups:    x, I    x, A    x, V    x, W
Allowed substitution hint:    F( x)

Proof of Theorem mapsnf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . . . 4  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
21ixpsnf1o 6790 . . 3  |-  ( I  e.  W  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
32adantl 277 . 2  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> X_ y  e.  { I } A
)
4 snexg 4213 . . . 4  |-  ( I  e.  W  ->  { I }  e.  _V )
5 simpl 109 . . . 4  |-  ( ( A  e.  V  /\  I  e.  W )  ->  A  e.  V )
6 ixpconstg 6761 . . . . 5  |-  ( ( { I }  e.  _V  /\  A  e.  V
)  ->  X_ y  e. 
{ I } A  =  ( A  ^m  { I } ) )
76eqcomd 2199 . . . 4  |-  ( ( { I }  e.  _V  /\  A  e.  V
)  ->  ( A  ^m  { I } )  =  X_ y  e.  {
I } A )
84, 5, 7syl2an2 594 . . 3  |-  ( ( A  e.  V  /\  I  e.  W )  ->  ( A  ^m  {
I } )  = 
X_ y  e.  {
I } A )
9 f1oeq3 5490 . . 3  |-  ( ( A  ^m  { I } )  =  X_ y  e.  { I } A  ->  ( F : A -1-1-onto-> ( A  ^m  {
I } )  <->  F : A
-1-1-onto-> X_ y  e.  { I } A ) )
108, 9syl 14 . 2  |-  ( ( A  e.  V  /\  I  e.  W )  ->  ( F : A -1-1-onto-> ( A  ^m  { I }
)  <->  F : A -1-1-onto-> X_ y  e.  { I } A
) )
113, 10mpbird 167 1  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618    |-> cmpt 4090    X. cxp 4657   -1-1-onto->wf1o 5253  (class class class)co 5918    ^m cmap 6702   X_cixp 6752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-ixp 6753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator