ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o Unicode version

Theorem mapsnf1o 6884
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
Assertion
Ref Expression
mapsnf1o  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I }
) )
Distinct variable groups:    x, I    x, A    x, V    x, W
Allowed substitution hint:    F( x)

Proof of Theorem mapsnf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . . . 4  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
21ixpsnf1o 6883 . . 3  |-  ( I  e.  W  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
32adantl 277 . 2  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> X_ y  e.  { I } A
)
4 snexg 4268 . . . 4  |-  ( I  e.  W  ->  { I }  e.  _V )
5 simpl 109 . . . 4  |-  ( ( A  e.  V  /\  I  e.  W )  ->  A  e.  V )
6 ixpconstg 6854 . . . . 5  |-  ( ( { I }  e.  _V  /\  A  e.  V
)  ->  X_ y  e. 
{ I } A  =  ( A  ^m  { I } ) )
76eqcomd 2235 . . . 4  |-  ( ( { I }  e.  _V  /\  A  e.  V
)  ->  ( A  ^m  { I } )  =  X_ y  e.  {
I } A )
84, 5, 7syl2an2 596 . . 3  |-  ( ( A  e.  V  /\  I  e.  W )  ->  ( A  ^m  {
I } )  = 
X_ y  e.  {
I } A )
9 f1oeq3 5562 . . 3  |-  ( ( A  ^m  { I } )  =  X_ y  e.  { I } A  ->  ( F : A -1-1-onto-> ( A  ^m  {
I } )  <->  F : A
-1-1-onto-> X_ y  e.  { I } A ) )
108, 9syl 14 . 2  |-  ( ( A  e.  V  /\  I  e.  W )  ->  ( F : A -1-1-onto-> ( A  ^m  { I }
)  <->  F : A -1-1-onto-> X_ y  e.  { I } A
) )
113, 10mpbird 167 1  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666    |-> cmpt 4145    X. cxp 4717   -1-1-onto->wf1o 5317  (class class class)co 6001    ^m cmap 6795   X_cixp 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-map 6797  df-ixp 6846
This theorem is referenced by:  pwssnf1o  13331
  Copyright terms: Public domain W3C validator