ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frechashgf1o Unicode version

Theorem frechashgf1o 9831
Description:  G maps  om one-to-one onto  NN0. (Contributed by Jim Kingdon, 19-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
frechashgf1o  |-  G : om
-1-1-onto-> NN0

Proof of Theorem frechashgf1o
StepHypRef Expression
1 0zd 8760 . . . 4  |-  ( T. 
->  0  e.  ZZ )
2 frecfzennn.1 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
31, 2frec2uzf1od 9809 . . 3  |-  ( T. 
->  G : om -1-1-onto-> ( ZZ>= `  0 )
)
43mptru 1298 . 2  |-  G : om
-1-1-onto-> ( ZZ>= `  0 )
5 nn0uz 9051 . . 3  |-  NN0  =  ( ZZ>= `  0 )
6 f1oeq3 5246 . . 3  |-  ( NN0  =  ( ZZ>= `  0
)  ->  ( G : om -1-1-onto-> NN0  <->  G : om -1-1-onto-> ( ZZ>= `  0 )
) )
75, 6ax-mp 7 . 2  |-  ( G : om -1-1-onto-> NN0  <->  G : om -1-1-onto-> ( ZZ>= `  0 )
)
84, 7mpbir 144 1  |-  G : om
-1-1-onto-> NN0
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1289   T. wtru 1290    |-> cmpt 3899   omcom 4405   -1-1-onto->wf1o 5014   ` cfv 5015  (class class class)co 5652  freccfrec 6155   0cc0 7348   1c1 7349    + caddc 7351   NN0cn0 8671   ZZcz 8748   ZZ>=cuz 9017
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-recs 6070  df-frec 6156  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-uz 9018
This theorem is referenced by:  fzfig  9833  nnenom  9837  fnn0nninf  9839  0tonninf  9841  1tonninf  9842  omgadd  10206
  Copyright terms: Public domain W3C validator