ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomf1o Unicode version

Theorem xpcomf1o 6980
Description: The canonical bijection from  ( A  X.  B ) to  ( B  X.  A ). (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
xpcomf1o.1  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
Assertion
Ref Expression
xpcomf1o  |-  F :
( A  X.  B
)
-1-1-onto-> ( B  X.  A
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem xpcomf1o
StepHypRef Expression
1 relxp 4827 . . . 4  |-  Rel  ( A  X.  B )
2 cnvf1o 6369 . . . 4  |-  ( Rel  ( A  X.  B
)  ->  ( x  e.  ( A  X.  B
)  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B
) )
31, 2ax-mp 5 . . 3  |-  ( x  e.  ( A  X.  B )  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B )
4 xpcomf1o.1 . . . 4  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
5 f1oeq1 5559 . . . 4  |-  ( F  =  ( x  e.  ( A  X.  B
)  |->  U. `' { x } )  ->  ( F : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B )  <->  ( x  e.  ( A  X.  B
)  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B
) ) )
64, 5ax-mp 5 . . 3  |-  ( F : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B )  <->  ( x  e.  ( A  X.  B
)  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B
) )
73, 6mpbir 146 . 2  |-  F :
( A  X.  B
)
-1-1-onto-> `' ( A  X.  B )
8 cnvxp 5146 . . 3  |-  `' ( A  X.  B )  =  ( B  X.  A )
9 f1oeq3 5561 . . 3  |-  ( `' ( A  X.  B
)  =  ( B  X.  A )  -> 
( F : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B
)  <->  F : ( A  X.  B ) -1-1-onto-> ( B  X.  A ) ) )
108, 9ax-mp 5 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B )  <->  F :
( A  X.  B
)
-1-1-onto-> ( B  X.  A
) )
117, 10mpbi 145 1  |-  F :
( A  X.  B
)
-1-1-onto-> ( B  X.  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   {csn 3666   U.cuni 3887    |-> cmpt 4144    X. cxp 4716   `'ccnv 4717   Rel wrel 4723   -1-1-onto->wf1o 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285
This theorem is referenced by:  xpcomco  6981  xpcomen  6982
  Copyright terms: Public domain W3C validator