ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomf1o Unicode version

Theorem xpcomf1o 6719
Description: The canonical bijection from  ( A  X.  B ) to  ( B  X.  A ). (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
xpcomf1o.1  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
Assertion
Ref Expression
xpcomf1o  |-  F :
( A  X.  B
)
-1-1-onto-> ( B  X.  A
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem xpcomf1o
StepHypRef Expression
1 relxp 4648 . . . 4  |-  Rel  ( A  X.  B )
2 cnvf1o 6122 . . . 4  |-  ( Rel  ( A  X.  B
)  ->  ( x  e.  ( A  X.  B
)  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B
) )
31, 2ax-mp 5 . . 3  |-  ( x  e.  ( A  X.  B )  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B )
4 xpcomf1o.1 . . . 4  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
5 f1oeq1 5356 . . . 4  |-  ( F  =  ( x  e.  ( A  X.  B
)  |->  U. `' { x } )  ->  ( F : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B )  <->  ( x  e.  ( A  X.  B
)  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B
) ) )
64, 5ax-mp 5 . . 3  |-  ( F : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B )  <->  ( x  e.  ( A  X.  B
)  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B
) )
73, 6mpbir 145 . 2  |-  F :
( A  X.  B
)
-1-1-onto-> `' ( A  X.  B )
8 cnvxp 4957 . . 3  |-  `' ( A  X.  B )  =  ( B  X.  A )
9 f1oeq3 5358 . . 3  |-  ( `' ( A  X.  B
)  =  ( B  X.  A )  -> 
( F : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B
)  <->  F : ( A  X.  B ) -1-1-onto-> ( B  X.  A ) ) )
108, 9ax-mp 5 . 2  |-  ( F : ( A  X.  B ) -1-1-onto-> `' ( A  X.  B )  <->  F :
( A  X.  B
)
-1-1-onto-> ( B  X.  A
) )
117, 10mpbi 144 1  |-  F :
( A  X.  B
)
-1-1-onto-> ( B  X.  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1331   {csn 3527   U.cuni 3736    |-> cmpt 3989    X. cxp 4537   `'ccnv 4538   Rel wrel 4544   -1-1-onto->wf1o 5122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by:  xpcomco  6720  xpcomen  6721
  Copyright terms: Public domain W3C validator