ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju Unicode version

Theorem eldju 7134
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
eldju  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem eldju
StepHypRef Expression
1 djuunr 7132 . . . 4  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( A B )
21eqcomi 2200 . . 3  |-  ( A B )  =  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )
32eleq2i 2263 . 2  |-  ( C  e.  ( A B )  <-> 
C  e.  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) ) )
4 elun 3304 . . 3  |-  ( C  e.  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )  <-> 
( C  e.  ran  (inl  |`  A )  \/  C  e.  ran  (inr  |`  B ) ) )
5 djulf1or 7122 . . . . . 6  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
6 f1ofn 5505 . . . . . 6  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  (inl  |`  A )  Fn  A )
7 fvelrnb 5608 . . . . . 6  |-  ( (inl  |`  A )  Fn  A  ->  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  ( (inl  |`  A ) `  x
)  =  C ) )
85, 6, 7mp2b 8 . . . . 5  |-  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  ( (inl  |`  A ) `
 x )  =  C )
9 eqcom 2198 . . . . . 6  |-  ( ( (inl  |`  A ) `  x )  =  C  <-> 
C  =  ( (inl  |`  A ) `  x
) )
109rexbii 2504 . . . . 5  |-  ( E. x  e.  A  ( (inl  |`  A ) `  x )  =  C  <->  E. x  e.  A  C  =  ( (inl  |`  A ) `  x
) )
118, 10bitri 184 . . . 4  |-  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  C  =  ( (inl  |`  A ) `  x
) )
12 djurf1or 7123 . . . . . 6  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
13 f1ofn 5505 . . . . . 6  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  (inr  |`  B )  Fn  B )
14 fvelrnb 5608 . . . . . 6  |-  ( (inr  |`  B )  Fn  B  ->  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  ( (inr  |`  B ) `  x
)  =  C ) )
1512, 13, 14mp2b 8 . . . . 5  |-  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  ( (inr  |`  B ) `
 x )  =  C )
16 eqcom 2198 . . . . . 6  |-  ( ( (inr  |`  B ) `  x )  =  C  <-> 
C  =  ( (inr  |`  B ) `  x
) )
1716rexbii 2504 . . . . 5  |-  ( E. x  e.  B  ( (inr  |`  B ) `  x )  =  C  <->  E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) )
1815, 17bitri 184 . . . 4  |-  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) )
1911, 18orbi12i 765 . . 3  |-  ( ( C  e.  ran  (inl  |`  A )  \/  C  e.  ran  (inr  |`  B ) )  <->  ( E. x  e.  A  C  =  ( (inl  |`  A ) `
 x )  \/ 
E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) ) )
204, 19bitri 184 . 2  |-  ( C  e.  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
213, 20bitri 184 1  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   E.wrex 2476    u. cun 3155   (/)c0 3450   {csn 3622    X. cxp 4661   ran crn 4664    |` cres 4665    Fn wfn 5253   -1-1-onto->wf1o 5257   ` cfv 5258   1oc1o 6467   ⊔ cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  djur  7135  exmidfodomrlemreseldju  7267
  Copyright terms: Public domain W3C validator