ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju Unicode version

Theorem eldju 7129
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
eldju  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem eldju
StepHypRef Expression
1 djuunr 7127 . . . 4  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( A B )
21eqcomi 2197 . . 3  |-  ( A B )  =  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )
32eleq2i 2260 . 2  |-  ( C  e.  ( A B )  <-> 
C  e.  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) ) )
4 elun 3301 . . 3  |-  ( C  e.  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )  <-> 
( C  e.  ran  (inl  |`  A )  \/  C  e.  ran  (inr  |`  B ) ) )
5 djulf1or 7117 . . . . . 6  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
6 f1ofn 5502 . . . . . 6  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  (inl  |`  A )  Fn  A )
7 fvelrnb 5605 . . . . . 6  |-  ( (inl  |`  A )  Fn  A  ->  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  ( (inl  |`  A ) `  x
)  =  C ) )
85, 6, 7mp2b 8 . . . . 5  |-  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  ( (inl  |`  A ) `
 x )  =  C )
9 eqcom 2195 . . . . . 6  |-  ( ( (inl  |`  A ) `  x )  =  C  <-> 
C  =  ( (inl  |`  A ) `  x
) )
109rexbii 2501 . . . . 5  |-  ( E. x  e.  A  ( (inl  |`  A ) `  x )  =  C  <->  E. x  e.  A  C  =  ( (inl  |`  A ) `  x
) )
118, 10bitri 184 . . . 4  |-  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  C  =  ( (inl  |`  A ) `  x
) )
12 djurf1or 7118 . . . . . 6  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
13 f1ofn 5502 . . . . . 6  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  (inr  |`  B )  Fn  B )
14 fvelrnb 5605 . . . . . 6  |-  ( (inr  |`  B )  Fn  B  ->  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  ( (inr  |`  B ) `  x
)  =  C ) )
1512, 13, 14mp2b 8 . . . . 5  |-  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  ( (inr  |`  B ) `
 x )  =  C )
16 eqcom 2195 . . . . . 6  |-  ( ( (inr  |`  B ) `  x )  =  C  <-> 
C  =  ( (inr  |`  B ) `  x
) )
1716rexbii 2501 . . . . 5  |-  ( E. x  e.  B  ( (inr  |`  B ) `  x )  =  C  <->  E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) )
1815, 17bitri 184 . . . 4  |-  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) )
1911, 18orbi12i 765 . . 3  |-  ( ( C  e.  ran  (inl  |`  A )  \/  C  e.  ran  (inr  |`  B ) )  <->  ( E. x  e.  A  C  =  ( (inl  |`  A ) `
 x )  \/ 
E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) ) )
204, 19bitri 184 . 2  |-  ( C  e.  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
213, 20bitri 184 1  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   E.wrex 2473    u. cun 3152   (/)c0 3447   {csn 3619    X. cxp 4658   ran crn 4661    |` cres 4662    Fn wfn 5250   -1-1-onto->wf1o 5254   ` cfv 5255   1oc1o 6464   ⊔ cdju 7098  inlcinl 7106  inrcinr 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109
This theorem is referenced by:  djur  7130  exmidfodomrlemreseldju  7262
  Copyright terms: Public domain W3C validator