ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju Unicode version

Theorem eldju 7024
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
eldju  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem eldju
StepHypRef Expression
1 djuunr 7022 . . . 4  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( A B )
21eqcomi 2168 . . 3  |-  ( A B )  =  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )
32eleq2i 2231 . 2  |-  ( C  e.  ( A B )  <-> 
C  e.  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) ) )
4 elun 3258 . . 3  |-  ( C  e.  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )  <-> 
( C  e.  ran  (inl  |`  A )  \/  C  e.  ran  (inr  |`  B ) ) )
5 djulf1or 7012 . . . . . 6  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
6 f1ofn 5427 . . . . . 6  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  (inl  |`  A )  Fn  A )
7 fvelrnb 5528 . . . . . 6  |-  ( (inl  |`  A )  Fn  A  ->  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  ( (inl  |`  A ) `  x
)  =  C ) )
85, 6, 7mp2b 8 . . . . 5  |-  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  ( (inl  |`  A ) `
 x )  =  C )
9 eqcom 2166 . . . . . 6  |-  ( ( (inl  |`  A ) `  x )  =  C  <-> 
C  =  ( (inl  |`  A ) `  x
) )
109rexbii 2471 . . . . 5  |-  ( E. x  e.  A  ( (inl  |`  A ) `  x )  =  C  <->  E. x  e.  A  C  =  ( (inl  |`  A ) `  x
) )
118, 10bitri 183 . . . 4  |-  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  C  =  ( (inl  |`  A ) `  x
) )
12 djurf1or 7013 . . . . . 6  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
13 f1ofn 5427 . . . . . 6  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  (inr  |`  B )  Fn  B )
14 fvelrnb 5528 . . . . . 6  |-  ( (inr  |`  B )  Fn  B  ->  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  ( (inr  |`  B ) `  x
)  =  C ) )
1512, 13, 14mp2b 8 . . . . 5  |-  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  ( (inr  |`  B ) `
 x )  =  C )
16 eqcom 2166 . . . . . 6  |-  ( ( (inr  |`  B ) `  x )  =  C  <-> 
C  =  ( (inr  |`  B ) `  x
) )
1716rexbii 2471 . . . . 5  |-  ( E. x  e.  B  ( (inr  |`  B ) `  x )  =  C  <->  E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) )
1815, 17bitri 183 . . . 4  |-  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) )
1911, 18orbi12i 754 . . 3  |-  ( ( C  e.  ran  (inl  |`  A )  \/  C  e.  ran  (inr  |`  B ) )  <->  ( E. x  e.  A  C  =  ( (inl  |`  A ) `
 x )  \/ 
E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) ) )
204, 19bitri 183 . 2  |-  ( C  e.  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
213, 20bitri 183 1  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698    = wceq 1342    e. wcel 2135   E.wrex 2443    u. cun 3109   (/)c0 3404   {csn 3570    X. cxp 4596   ran crn 4599    |` cres 4600    Fn wfn 5177   -1-1-onto->wf1o 5181   ` cfv 5182   1oc1o 6368   ⊔ cdju 6993  inlcinl 7001  inrcinr 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1st 6100  df-2nd 6101  df-1o 6375  df-dju 6994  df-inl 7003  df-inr 7004
This theorem is referenced by:  djur  7025  exmidfodomrlemreseldju  7147
  Copyright terms: Public domain W3C validator