| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en1 | Unicode version | ||
| Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) |
| Ref | Expression |
|---|---|
| en1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6538 |
. . . . 5
| |
| 2 | 1 | breq2i 4067 |
. . . 4
|
| 3 | bren 6858 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | f1ocnv 5557 |
. . . . 5
| |
| 6 | f1ofo 5551 |
. . . . . . . 8
| |
| 7 | forn 5523 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | f1of 5544 |
. . . . . . . . . 10
| |
| 10 | 0ex 4187 |
. . . . . . . . . . . 12
| |
| 11 | 10 | fsn2 5777 |
. . . . . . . . . . 11
|
| 12 | 11 | simprbi 275 |
. . . . . . . . . 10
|
| 13 | 9, 12 | syl 14 |
. . . . . . . . 9
|
| 14 | 13 | rneqd 4926 |
. . . . . . . 8
|
| 15 | 10 | rnsnop 5182 |
. . . . . . . 8
|
| 16 | 14, 15 | eqtrdi 2256 |
. . . . . . 7
|
| 17 | 8, 16 | eqtr3d 2242 |
. . . . . 6
|
| 18 | 5, 17 | syl 14 |
. . . . 5
|
| 19 | f1ofn 5545 |
. . . . . . 7
| |
| 20 | 10 | snid 3674 |
. . . . . . 7
|
| 21 | funfvex 5616 |
. . . . . . . 8
| |
| 22 | 21 | funfni 5395 |
. . . . . . 7
|
| 23 | 19, 20, 22 | sylancl 413 |
. . . . . 6
|
| 24 | sneq 3654 |
. . . . . . . 8
| |
| 25 | 24 | eqeq2d 2219 |
. . . . . . 7
|
| 26 | 25 | spcegv 2868 |
. . . . . 6
|
| 27 | 23, 26 | syl 14 |
. . . . 5
|
| 28 | 5, 18, 27 | sylc 62 |
. . . 4
|
| 29 | 28 | exlimiv 1622 |
. . 3
|
| 30 | 4, 29 | sylbi 121 |
. 2
|
| 31 | vex 2779 |
. . . . 5
| |
| 32 | 31 | ensn1 6911 |
. . . 4
|
| 33 | breq1 4062 |
. . . 4
| |
| 34 | 32, 33 | mpbiri 168 |
. . 3
|
| 35 | 34 | exlimiv 1622 |
. 2
|
| 36 | 30, 35 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1o 6525 df-en 6851 |
| This theorem is referenced by: en1bg 6915 reuen1 6916 pm54.43 7324 upgrex 15814 |
| Copyright terms: Public domain | W3C validator |