ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1 Unicode version

Theorem en1 6891
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Distinct variable group:    x, A

Proof of Theorem en1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df1o2 6515 . . . . 5  |-  1o  =  { (/) }
21breq2i 4052 . . . 4  |-  ( A 
~~  1o  <->  A  ~~  { (/) } )
3 bren 6835 . . . 4  |-  ( A 
~~  { (/) }  <->  E. f 
f : A -1-1-onto-> { (/) } )
42, 3bitri 184 . . 3  |-  ( A 
~~  1o  <->  E. f  f : A -1-1-onto-> { (/) } )
5 f1ocnv 5535 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  `' f : { (/) } -1-1-onto-> A )
6 f1ofo 5529 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } -onto-> A )
7 forn 5501 . . . . . . . 8  |-  ( `' f : { (/) }
-onto-> A  ->  ran  `' f  =  A )
86, 7syl 14 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  A )
9 f1of 5522 . . . . . . . . . 10  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } --> A )
10 0ex 4171 . . . . . . . . . . . 12  |-  (/)  e.  _V
1110fsn2 5754 . . . . . . . . . . 11  |-  ( `' f : { (/) } --> A  <->  ( ( `' f `  (/) )  e.  A  /\  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } ) )
1211simprbi 275 . . . . . . . . . 10  |-  ( `' f : { (/) } --> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
139, 12syl 14 . . . . . . . . 9  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
1413rneqd 4907 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  ran  { <. (/) ,  ( `' f `  (/) ) >. } )
1510rnsnop 5163 . . . . . . . 8  |-  ran  { <.
(/) ,  ( `' f `  (/) ) >. }  =  { ( `' f `  (/) ) }
1614, 15eqtrdi 2254 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  { ( `' f `
 (/) ) } )
178, 16eqtr3d 2240 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  A  =  {
( `' f `  (/) ) } )
185, 17syl 14 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  A  =  { ( `' f `
 (/) ) } )
19 f1ofn 5523 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  Fn 
{ (/) } )
2010snid 3664 . . . . . . 7  |-  (/)  e.  { (/)
}
21 funfvex 5593 . . . . . . . 8  |-  ( ( Fun  `' f  /\  (/) 
e.  dom  `' f
)  ->  ( `' f `  (/) )  e. 
_V )
2221funfni 5376 . . . . . . 7  |-  ( ( `' f  Fn  { (/) }  /\  (/)  e.  { (/) } )  ->  ( `' f `  (/) )  e. 
_V )
2319, 20, 22sylancl 413 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ( `' f `
 (/) )  e.  _V )
24 sneq 3644 . . . . . . . 8  |-  ( x  =  ( `' f `
 (/) )  ->  { x }  =  { ( `' f `  (/) ) } )
2524eqeq2d 2217 . . . . . . 7  |-  ( x  =  ( `' f `
 (/) )  ->  ( A  =  { x } 
<->  A  =  { ( `' f `  (/) ) } ) )
2625spcegv 2861 . . . . . 6  |-  ( ( `' f `  (/) )  e. 
_V  ->  ( A  =  { ( `' f `
 (/) ) }  ->  E. x  A  =  {
x } ) )
2723, 26syl 14 . . . . 5  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ( A  =  { ( `' f `
 (/) ) }  ->  E. x  A  =  {
x } ) )
285, 18, 27sylc 62 . . . 4  |-  ( f : A -1-1-onto-> { (/) }  ->  E. x  A  =  { x } )
2928exlimiv 1621 . . 3  |-  ( E. f  f : A -1-1-onto-> { (/)
}  ->  E. x  A  =  { x } )
304, 29sylbi 121 . 2  |-  ( A 
~~  1o  ->  E. x  A  =  { x } )
31 vex 2775 . . . . 5  |-  x  e. 
_V
3231ensn1 6888 . . . 4  |-  { x }  ~~  1o
33 breq1 4047 . . . 4  |-  ( A  =  { x }  ->  ( A  ~~  1o  <->  { x }  ~~  1o ) )
3432, 33mpbiri 168 . . 3  |-  ( A  =  { x }  ->  A  ~~  1o )
3534exlimiv 1621 . 2  |-  ( E. x  A  =  {
x }  ->  A  ~~  1o )
3630, 35impbii 126 1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   (/)c0 3460   {csn 3633   <.cop 3636   class class class wbr 4044   `'ccnv 4674   ran crn 4676    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271   1oc1o 6495    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6502  df-en 6828
This theorem is referenced by:  en1bg  6892  reuen1  6893  pm54.43  7298
  Copyright terms: Public domain W3C validator