| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en1 | Unicode version | ||
| Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) |
| Ref | Expression |
|---|---|
| en1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6515 |
. . . . 5
| |
| 2 | 1 | breq2i 4052 |
. . . 4
|
| 3 | bren 6835 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | f1ocnv 5535 |
. . . . 5
| |
| 6 | f1ofo 5529 |
. . . . . . . 8
| |
| 7 | forn 5501 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | f1of 5522 |
. . . . . . . . . 10
| |
| 10 | 0ex 4171 |
. . . . . . . . . . . 12
| |
| 11 | 10 | fsn2 5754 |
. . . . . . . . . . 11
|
| 12 | 11 | simprbi 275 |
. . . . . . . . . 10
|
| 13 | 9, 12 | syl 14 |
. . . . . . . . 9
|
| 14 | 13 | rneqd 4907 |
. . . . . . . 8
|
| 15 | 10 | rnsnop 5163 |
. . . . . . . 8
|
| 16 | 14, 15 | eqtrdi 2254 |
. . . . . . 7
|
| 17 | 8, 16 | eqtr3d 2240 |
. . . . . 6
|
| 18 | 5, 17 | syl 14 |
. . . . 5
|
| 19 | f1ofn 5523 |
. . . . . . 7
| |
| 20 | 10 | snid 3664 |
. . . . . . 7
|
| 21 | funfvex 5593 |
. . . . . . . 8
| |
| 22 | 21 | funfni 5376 |
. . . . . . 7
|
| 23 | 19, 20, 22 | sylancl 413 |
. . . . . 6
|
| 24 | sneq 3644 |
. . . . . . . 8
| |
| 25 | 24 | eqeq2d 2217 |
. . . . . . 7
|
| 26 | 25 | spcegv 2861 |
. . . . . 6
|
| 27 | 23, 26 | syl 14 |
. . . . 5
|
| 28 | 5, 18, 27 | sylc 62 |
. . . 4
|
| 29 | 28 | exlimiv 1621 |
. . 3
|
| 30 | 4, 29 | sylbi 121 |
. 2
|
| 31 | vex 2775 |
. . . . 5
| |
| 32 | 31 | ensn1 6888 |
. . . 4
|
| 33 | breq1 4047 |
. . . 4
| |
| 34 | 32, 33 | mpbiri 168 |
. . 3
|
| 35 | 34 | exlimiv 1621 |
. 2
|
| 36 | 30, 35 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1o 6502 df-en 6828 |
| This theorem is referenced by: en1bg 6892 reuen1 6893 pm54.43 7298 |
| Copyright terms: Public domain | W3C validator |