| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > en1 | Unicode version | ||
| Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) | 
| Ref | Expression | 
|---|---|
| en1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df1o2 6487 | 
. . . . 5
 | |
| 2 | 1 | breq2i 4041 | 
. . . 4
 | 
| 3 | bren 6806 | 
. . . 4
 | |
| 4 | 2, 3 | bitri 184 | 
. . 3
 | 
| 5 | f1ocnv 5517 | 
. . . . 5
 | |
| 6 | f1ofo 5511 | 
. . . . . . . 8
 | |
| 7 | forn 5483 | 
. . . . . . . 8
 | |
| 8 | 6, 7 | syl 14 | 
. . . . . . 7
 | 
| 9 | f1of 5504 | 
. . . . . . . . . 10
 | |
| 10 | 0ex 4160 | 
. . . . . . . . . . . 12
 | |
| 11 | 10 | fsn2 5736 | 
. . . . . . . . . . 11
 | 
| 12 | 11 | simprbi 275 | 
. . . . . . . . . 10
 | 
| 13 | 9, 12 | syl 14 | 
. . . . . . . . 9
 | 
| 14 | 13 | rneqd 4895 | 
. . . . . . . 8
 | 
| 15 | 10 | rnsnop 5150 | 
. . . . . . . 8
 | 
| 16 | 14, 15 | eqtrdi 2245 | 
. . . . . . 7
 | 
| 17 | 8, 16 | eqtr3d 2231 | 
. . . . . 6
 | 
| 18 | 5, 17 | syl 14 | 
. . . . 5
 | 
| 19 | f1ofn 5505 | 
. . . . . . 7
 | |
| 20 | 10 | snid 3653 | 
. . . . . . 7
 | 
| 21 | funfvex 5575 | 
. . . . . . . 8
 | |
| 22 | 21 | funfni 5358 | 
. . . . . . 7
 | 
| 23 | 19, 20, 22 | sylancl 413 | 
. . . . . 6
 | 
| 24 | sneq 3633 | 
. . . . . . . 8
 | |
| 25 | 24 | eqeq2d 2208 | 
. . . . . . 7
 | 
| 26 | 25 | spcegv 2852 | 
. . . . . 6
 | 
| 27 | 23, 26 | syl 14 | 
. . . . 5
 | 
| 28 | 5, 18, 27 | sylc 62 | 
. . . 4
 | 
| 29 | 28 | exlimiv 1612 | 
. . 3
 | 
| 30 | 4, 29 | sylbi 121 | 
. 2
 | 
| 31 | vex 2766 | 
. . . . 5
 | |
| 32 | 31 | ensn1 6855 | 
. . . 4
 | 
| 33 | breq1 4036 | 
. . . 4
 | |
| 34 | 32, 33 | mpbiri 168 | 
. . 3
 | 
| 35 | 34 | exlimiv 1612 | 
. 2
 | 
| 36 | 30, 35 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1o 6474 df-en 6800 | 
| This theorem is referenced by: en1bg 6859 reuen1 6860 pm54.43 7257 | 
| Copyright terms: Public domain | W3C validator |