ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1 Unicode version

Theorem en1 6693
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Distinct variable group:    x, A

Proof of Theorem en1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df1o2 6326 . . . . 5  |-  1o  =  { (/) }
21breq2i 3937 . . . 4  |-  ( A 
~~  1o  <->  A  ~~  { (/) } )
3 bren 6641 . . . 4  |-  ( A 
~~  { (/) }  <->  E. f 
f : A -1-1-onto-> { (/) } )
42, 3bitri 183 . . 3  |-  ( A 
~~  1o  <->  E. f  f : A -1-1-onto-> { (/) } )
5 f1ocnv 5380 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  `' f : { (/) } -1-1-onto-> A )
6 f1ofo 5374 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } -onto-> A )
7 forn 5348 . . . . . . . 8  |-  ( `' f : { (/) }
-onto-> A  ->  ran  `' f  =  A )
86, 7syl 14 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  A )
9 f1of 5367 . . . . . . . . . 10  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } --> A )
10 0ex 4055 . . . . . . . . . . . 12  |-  (/)  e.  _V
1110fsn2 5594 . . . . . . . . . . 11  |-  ( `' f : { (/) } --> A  <->  ( ( `' f `  (/) )  e.  A  /\  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } ) )
1211simprbi 273 . . . . . . . . . 10  |-  ( `' f : { (/) } --> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
139, 12syl 14 . . . . . . . . 9  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
1413rneqd 4768 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  ran  { <. (/) ,  ( `' f `  (/) ) >. } )
1510rnsnop 5019 . . . . . . . 8  |-  ran  { <.
(/) ,  ( `' f `  (/) ) >. }  =  { ( `' f `  (/) ) }
1614, 15syl6eq 2188 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  { ( `' f `
 (/) ) } )
178, 16eqtr3d 2174 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  A  =  {
( `' f `  (/) ) } )
185, 17syl 14 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  A  =  { ( `' f `
 (/) ) } )
19 f1ofn 5368 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  Fn 
{ (/) } )
2010snid 3556 . . . . . . 7  |-  (/)  e.  { (/)
}
21 funfvex 5438 . . . . . . . 8  |-  ( ( Fun  `' f  /\  (/) 
e.  dom  `' f
)  ->  ( `' f `  (/) )  e. 
_V )
2221funfni 5223 . . . . . . 7  |-  ( ( `' f  Fn  { (/) }  /\  (/)  e.  { (/) } )  ->  ( `' f `  (/) )  e. 
_V )
2319, 20, 22sylancl 409 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ( `' f `
 (/) )  e.  _V )
24 sneq 3538 . . . . . . . 8  |-  ( x  =  ( `' f `
 (/) )  ->  { x }  =  { ( `' f `  (/) ) } )
2524eqeq2d 2151 . . . . . . 7  |-  ( x  =  ( `' f `
 (/) )  ->  ( A  =  { x } 
<->  A  =  { ( `' f `  (/) ) } ) )
2625spcegv 2774 . . . . . 6  |-  ( ( `' f `  (/) )  e. 
_V  ->  ( A  =  { ( `' f `
 (/) ) }  ->  E. x  A  =  {
x } ) )
2723, 26syl 14 . . . . 5  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ( A  =  { ( `' f `
 (/) ) }  ->  E. x  A  =  {
x } ) )
285, 18, 27sylc 62 . . . 4  |-  ( f : A -1-1-onto-> { (/) }  ->  E. x  A  =  { x } )
2928exlimiv 1577 . . 3  |-  ( E. f  f : A -1-1-onto-> { (/)
}  ->  E. x  A  =  { x } )
304, 29sylbi 120 . 2  |-  ( A 
~~  1o  ->  E. x  A  =  { x } )
31 vex 2689 . . . . 5  |-  x  e. 
_V
3231ensn1 6690 . . . 4  |-  { x }  ~~  1o
33 breq1 3932 . . . 4  |-  ( A  =  { x }  ->  ( A  ~~  1o  <->  { x }  ~~  1o ) )
3432, 33mpbiri 167 . . 3  |-  ( A  =  { x }  ->  A  ~~  1o )
3534exlimiv 1577 . 2  |-  ( E. x  A  =  {
x }  ->  A  ~~  1o )
3630, 35impbii 125 1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   _Vcvv 2686   (/)c0 3363   {csn 3527   <.cop 3530   class class class wbr 3929   `'ccnv 4538   ran crn 4540    Fn wfn 5118   -->wf 5119   -onto->wfo 5121   -1-1-onto->wf1o 5122   ` cfv 5123   1oc1o 6306    ~~ cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-en 6635
This theorem is referenced by:  en1bg  6694  reuen1  6695  pm54.43  7046
  Copyright terms: Public domain W3C validator