| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpen | Unicode version | ||
| Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| xpen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6835 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | bren 6835 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 5 | ad2antlr 489 |
. . 3
|
| 7 | relen 6831 |
. . . . . . 7
| |
| 8 | 7 | brrelex1i 4718 |
. . . . . 6
|
| 9 | 7 | brrelex1i 4718 |
. . . . . 6
|
| 10 | xpexg 4789 |
. . . . . 6
| |
| 11 | 8, 9, 10 | syl2an 289 |
. . . . 5
|
| 12 | 11 | ad2antrr 488 |
. . . 4
|
| 13 | simplr 528 |
. . . . . 6
| |
| 14 | f1ofn 5523 |
. . . . . . . 8
| |
| 15 | dffn5im 5624 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
|
| 17 | f1oeq1 5510 |
. . . . . . 7
| |
| 18 | 13, 16, 17 | 3syl 17 |
. . . . . 6
|
| 19 | 13, 18 | mpbid 147 |
. . . . 5
|
| 20 | simpr 110 |
. . . . . 6
| |
| 21 | f1ofn 5523 |
. . . . . . . 8
| |
| 22 | dffn5im 5624 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
|
| 24 | f1oeq1 5510 |
. . . . . . 7
| |
| 25 | 20, 23, 24 | 3syl 17 |
. . . . . 6
|
| 26 | 20, 25 | mpbid 147 |
. . . . 5
|
| 27 | 19, 26 | xpf1o 6941 |
. . . 4
|
| 28 | f1oeng 6848 |
. . . 4
| |
| 29 | 12, 27, 28 | syl2anc 411 |
. . 3
|
| 30 | 6, 29 | exlimddv 1922 |
. 2
|
| 31 | 3, 30 | exlimddv 1922 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-en 6828 |
| This theorem is referenced by: xpdjuen 7330 xpnnen 12765 xpomen 12766 qnnen 12802 |
| Copyright terms: Public domain | W3C validator |