ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpen Unicode version

Theorem xpen 6967
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
Assertion
Ref Expression
xpen  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  X.  C
)  ~~  ( B  X.  D ) )

Proof of Theorem xpen
Dummy variables  f  g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6858 . . . 4  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
21biimpi 120 . . 3  |-  ( A 
~~  B  ->  E. f 
f : A -1-1-onto-> B )
32adantr 276 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  E. f  f : A
-1-1-onto-> B )
4 bren 6858 . . . . 5  |-  ( C 
~~  D  <->  E. g 
g : C -1-1-onto-> D )
54biimpi 120 . . . 4  |-  ( C 
~~  D  ->  E. g 
g : C -1-1-onto-> D )
65ad2antlr 489 . . 3  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  f : A -1-1-onto-> B
)  ->  E. g 
g : C -1-1-onto-> D )
7 relen 6854 . . . . . . 7  |-  Rel  ~~
87brrelex1i 4736 . . . . . 6  |-  ( A 
~~  B  ->  A  e.  _V )
97brrelex1i 4736 . . . . . 6  |-  ( C 
~~  D  ->  C  e.  _V )
10 xpexg 4807 . . . . . 6  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  X.  C
)  e.  _V )
118, 9, 10syl2an 289 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  X.  C
)  e.  _V )
1211ad2antrr 488 . . . 4  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  ( A  X.  C )  e. 
_V )
13 simplr 528 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  f : A -1-1-onto-> B )
14 f1ofn 5545 . . . . . . . 8  |-  ( f : A -1-1-onto-> B  ->  f  Fn  A )
15 dffn5im 5647 . . . . . . . 8  |-  ( f  Fn  A  ->  f  =  ( x  e.  A  |->  ( f `  x ) ) )
1614, 15syl 14 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  f  =  ( x  e.  A  |->  ( f `  x
) ) )
17 f1oeq1 5532 . . . . . . 7  |-  ( f  =  ( x  e.  A  |->  ( f `  x ) )  -> 
( f : A -1-1-onto-> B  <->  ( x  e.  A  |->  ( f `  x ) ) : A -1-1-onto-> B ) )
1813, 16, 173syl 17 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
f : A -1-1-onto-> B  <->  ( x  e.  A  |->  ( f `
 x ) ) : A -1-1-onto-> B ) )
1913, 18mpbid 147 . . . . 5  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
x  e.  A  |->  ( f `  x ) ) : A -1-1-onto-> B )
20 simpr 110 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  g : C -1-1-onto-> D )
21 f1ofn 5545 . . . . . . . 8  |-  ( g : C -1-1-onto-> D  ->  g  Fn  C )
22 dffn5im 5647 . . . . . . . 8  |-  ( g  Fn  C  ->  g  =  ( y  e.  C  |->  ( g `  y ) ) )
2321, 22syl 14 . . . . . . 7  |-  ( g : C -1-1-onto-> D  ->  g  =  ( y  e.  C  |->  ( g `  y
) ) )
24 f1oeq1 5532 . . . . . . 7  |-  ( g  =  ( y  e.  C  |->  ( g `  y ) )  -> 
( g : C -1-1-onto-> D  <->  ( y  e.  C  |->  ( g `  y ) ) : C -1-1-onto-> D ) )
2520, 23, 243syl 17 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
g : C -1-1-onto-> D  <->  ( y  e.  C  |->  ( g `
 y ) ) : C -1-1-onto-> D ) )
2620, 25mpbid 147 . . . . 5  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
y  e.  C  |->  ( g `  y ) ) : C -1-1-onto-> D )
2719, 26xpf1o 6966 . . . 4  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
x  e.  A , 
y  e.  C  |->  <.
( f `  x
) ,  ( g `
 y ) >.
) : ( A  X.  C ) -1-1-onto-> ( B  X.  D ) )
28 f1oeng 6871 . . . 4  |-  ( ( ( A  X.  C
)  e.  _V  /\  ( x  e.  A ,  y  e.  C  |-> 
<. ( f `  x
) ,  ( g `
 y ) >.
) : ( A  X.  C ) -1-1-onto-> ( B  X.  D ) )  ->  ( A  X.  C )  ~~  ( B  X.  D ) )
2912, 27, 28syl2anc 411 . . 3  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  ( A  X.  C )  ~~  ( B  X.  D
) )
306, 29exlimddv 1923 . 2  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  f : A -1-1-onto-> B
)  ->  ( A  X.  C )  ~~  ( B  X.  D ) )
313, 30exlimddv 1923 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  X.  C
)  ~~  ( B  X.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776   <.cop 3646   class class class wbr 4059    |-> cmpt 4121    X. cxp 4691    Fn wfn 5285   -1-1-onto->wf1o 5289   ` cfv 5290    e. cmpo 5969    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-en 6851
This theorem is referenced by:  xpdjuen  7361  xpnnen  12880  xpomen  12881  qnnen  12917
  Copyright terms: Public domain W3C validator