Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpen | Unicode version |
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
xpen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6713 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | adantr 274 | . 2 |
4 | bren 6713 | . . . . 5 | |
5 | 4 | biimpi 119 | . . . 4 |
6 | 5 | ad2antlr 481 | . . 3 |
7 | relen 6710 | . . . . . . 7 | |
8 | 7 | brrelex1i 4647 | . . . . . 6 |
9 | 7 | brrelex1i 4647 | . . . . . 6 |
10 | xpexg 4718 | . . . . . 6 | |
11 | 8, 9, 10 | syl2an 287 | . . . . 5 |
12 | 11 | ad2antrr 480 | . . . 4 |
13 | simplr 520 | . . . . . 6 | |
14 | f1ofn 5433 | . . . . . . . 8 | |
15 | dffn5im 5532 | . . . . . . . 8 | |
16 | 14, 15 | syl 14 | . . . . . . 7 |
17 | f1oeq1 5421 | . . . . . . 7 | |
18 | 13, 16, 17 | 3syl 17 | . . . . . 6 |
19 | 13, 18 | mpbid 146 | . . . . 5 |
20 | simpr 109 | . . . . . 6 | |
21 | f1ofn 5433 | . . . . . . . 8 | |
22 | dffn5im 5532 | . . . . . . . 8 | |
23 | 21, 22 | syl 14 | . . . . . . 7 |
24 | f1oeq1 5421 | . . . . . . 7 | |
25 | 20, 23, 24 | 3syl 17 | . . . . . 6 |
26 | 20, 25 | mpbid 146 | . . . . 5 |
27 | 19, 26 | xpf1o 6810 | . . . 4 |
28 | f1oeng 6723 | . . . 4 | |
29 | 12, 27, 28 | syl2anc 409 | . . 3 |
30 | 6, 29 | exlimddv 1886 | . 2 |
31 | 3, 30 | exlimddv 1886 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 cop 3579 class class class wbr 3982 cmpt 4043 cxp 4602 wfn 5183 wf1o 5187 cfv 5188 cmpo 5844 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-en 6707 |
This theorem is referenced by: xpdjuen 7174 xpnnen 12327 xpomen 12328 qnnen 12364 |
Copyright terms: Public domain | W3C validator |