ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpen Unicode version

Theorem xpen 6942
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
Assertion
Ref Expression
xpen  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  X.  C
)  ~~  ( B  X.  D ) )

Proof of Theorem xpen
Dummy variables  f  g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6835 . . . 4  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
21biimpi 120 . . 3  |-  ( A 
~~  B  ->  E. f 
f : A -1-1-onto-> B )
32adantr 276 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  E. f  f : A
-1-1-onto-> B )
4 bren 6835 . . . . 5  |-  ( C 
~~  D  <->  E. g 
g : C -1-1-onto-> D )
54biimpi 120 . . . 4  |-  ( C 
~~  D  ->  E. g 
g : C -1-1-onto-> D )
65ad2antlr 489 . . 3  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  f : A -1-1-onto-> B
)  ->  E. g 
g : C -1-1-onto-> D )
7 relen 6831 . . . . . . 7  |-  Rel  ~~
87brrelex1i 4718 . . . . . 6  |-  ( A 
~~  B  ->  A  e.  _V )
97brrelex1i 4718 . . . . . 6  |-  ( C 
~~  D  ->  C  e.  _V )
10 xpexg 4789 . . . . . 6  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  X.  C
)  e.  _V )
118, 9, 10syl2an 289 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  X.  C
)  e.  _V )
1211ad2antrr 488 . . . 4  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  ( A  X.  C )  e. 
_V )
13 simplr 528 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  f : A -1-1-onto-> B )
14 f1ofn 5523 . . . . . . . 8  |-  ( f : A -1-1-onto-> B  ->  f  Fn  A )
15 dffn5im 5624 . . . . . . . 8  |-  ( f  Fn  A  ->  f  =  ( x  e.  A  |->  ( f `  x ) ) )
1614, 15syl 14 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  f  =  ( x  e.  A  |->  ( f `  x
) ) )
17 f1oeq1 5510 . . . . . . 7  |-  ( f  =  ( x  e.  A  |->  ( f `  x ) )  -> 
( f : A -1-1-onto-> B  <->  ( x  e.  A  |->  ( f `  x ) ) : A -1-1-onto-> B ) )
1813, 16, 173syl 17 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
f : A -1-1-onto-> B  <->  ( x  e.  A  |->  ( f `
 x ) ) : A -1-1-onto-> B ) )
1913, 18mpbid 147 . . . . 5  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
x  e.  A  |->  ( f `  x ) ) : A -1-1-onto-> B )
20 simpr 110 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  g : C -1-1-onto-> D )
21 f1ofn 5523 . . . . . . . 8  |-  ( g : C -1-1-onto-> D  ->  g  Fn  C )
22 dffn5im 5624 . . . . . . . 8  |-  ( g  Fn  C  ->  g  =  ( y  e.  C  |->  ( g `  y ) ) )
2321, 22syl 14 . . . . . . 7  |-  ( g : C -1-1-onto-> D  ->  g  =  ( y  e.  C  |->  ( g `  y
) ) )
24 f1oeq1 5510 . . . . . . 7  |-  ( g  =  ( y  e.  C  |->  ( g `  y ) )  -> 
( g : C -1-1-onto-> D  <->  ( y  e.  C  |->  ( g `  y ) ) : C -1-1-onto-> D ) )
2520, 23, 243syl 17 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
g : C -1-1-onto-> D  <->  ( y  e.  C  |->  ( g `
 y ) ) : C -1-1-onto-> D ) )
2620, 25mpbid 147 . . . . 5  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
y  e.  C  |->  ( g `  y ) ) : C -1-1-onto-> D )
2719, 26xpf1o 6941 . . . 4  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  (
x  e.  A , 
y  e.  C  |->  <.
( f `  x
) ,  ( g `
 y ) >.
) : ( A  X.  C ) -1-1-onto-> ( B  X.  D ) )
28 f1oeng 6848 . . . 4  |-  ( ( ( A  X.  C
)  e.  _V  /\  ( x  e.  A ,  y  e.  C  |-> 
<. ( f `  x
) ,  ( g `
 y ) >.
) : ( A  X.  C ) -1-1-onto-> ( B  X.  D ) )  ->  ( A  X.  C )  ~~  ( B  X.  D ) )
2912, 27, 28syl2anc 411 . . 3  |-  ( ( ( ( A  ~~  B  /\  C  ~~  D
)  /\  f : A
-1-1-onto-> B )  /\  g : C -1-1-onto-> D )  ->  ( A  X.  C )  ~~  ( B  X.  D
) )
306, 29exlimddv 1922 . 2  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  f : A -1-1-onto-> B
)  ->  ( A  X.  C )  ~~  ( B  X.  D ) )
313, 30exlimddv 1922 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  X.  C
)  ~~  ( B  X.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   <.cop 3636   class class class wbr 4044    |-> cmpt 4105    X. cxp 4673    Fn wfn 5266   -1-1-onto->wf1o 5270   ` cfv 5271    e. cmpo 5946    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-en 6828
This theorem is referenced by:  xpdjuen  7330  xpnnen  12765  xpomen  12766  qnnen  12802
  Copyright terms: Public domain W3C validator