ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inresflem Unicode version

Theorem inresflem 7062
Description: Lemma for inlresf1 7063 and inrresf1 7064. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
inresflem.1  |-  F : A
-1-1-onto-> ( { X }  X.  A )
inresflem.2  |-  ( x  e.  A  ->  ( F `  x )  e.  B )
Assertion
Ref Expression
inresflem  |-  F : A -1-1-> B
Distinct variable groups:    x, A    x, B    x, F
Allowed substitution hint:    X( x)

Proof of Theorem inresflem
StepHypRef Expression
1 inresflem.1 . . 3  |-  F : A
-1-1-onto-> ( { X }  X.  A )
2 f1of1 5462 . . 3  |-  ( F : A -1-1-onto-> ( { X }  X.  A )  ->  F : A -1-1-> ( { X }  X.  A ) )
31, 2ax-mp 5 . 2  |-  F : A -1-1-> ( { X }  X.  A )
4 f1ofn 5464 . . . 4  |-  ( F : A -1-1-onto-> ( { X }  X.  A )  ->  F  Fn  A )
51, 4ax-mp 5 . . 3  |-  F  Fn  A
6 inresflem.2 . . . . 5  |-  ( x  e.  A  ->  ( F `  x )  e.  B )
76rgen 2530 . . . 4  |-  A. x  e.  A  ( F `  x )  e.  B
8 fnfvrnss 5679 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
95, 7, 8mp2an 426 . . 3  |-  ran  F  C_  B
10 df-f 5222 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
115, 9, 10mpbir2an 942 . 2  |-  F : A
--> B
12 f1ff1 5431 . 2  |-  ( ( F : A -1-1-> ( { X }  X.  A )  /\  F : A --> B )  ->  F : A -1-1-> B )
133, 11, 12mp2an 426 1  |-  F : A -1-1-> B
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   A.wral 2455    C_ wss 3131   {csn 3594    X. cxp 4626   ran crn 4629    Fn wfn 5213   -->wf 5214   -1-1->wf1 5215   -1-1-onto->wf1o 5217   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-f1o 5225  df-fv 5226
This theorem is referenced by:  inlresf1  7063  inrresf1  7064
  Copyright terms: Public domain W3C validator