ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inresflem Unicode version

Theorem inresflem 7227
Description: Lemma for inlresf1 7228 and inrresf1 7229. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
inresflem.1  |-  F : A
-1-1-onto-> ( { X }  X.  A )
inresflem.2  |-  ( x  e.  A  ->  ( F `  x )  e.  B )
Assertion
Ref Expression
inresflem  |-  F : A -1-1-> B
Distinct variable groups:    x, A    x, B    x, F
Allowed substitution hint:    X( x)

Proof of Theorem inresflem
StepHypRef Expression
1 inresflem.1 . . 3  |-  F : A
-1-1-onto-> ( { X }  X.  A )
2 f1of1 5571 . . 3  |-  ( F : A -1-1-onto-> ( { X }  X.  A )  ->  F : A -1-1-> ( { X }  X.  A ) )
31, 2ax-mp 5 . 2  |-  F : A -1-1-> ( { X }  X.  A )
4 f1ofn 5573 . . . 4  |-  ( F : A -1-1-onto-> ( { X }  X.  A )  ->  F  Fn  A )
51, 4ax-mp 5 . . 3  |-  F  Fn  A
6 inresflem.2 . . . . 5  |-  ( x  e.  A  ->  ( F `  x )  e.  B )
76rgen 2583 . . . 4  |-  A. x  e.  A  ( F `  x )  e.  B
8 fnfvrnss 5795 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
95, 7, 8mp2an 426 . . 3  |-  ran  F  C_  B
10 df-f 5322 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
115, 9, 10mpbir2an 948 . 2  |-  F : A
--> B
12 f1ff1 5539 . 2  |-  ( ( F : A -1-1-> ( { X }  X.  A )  /\  F : A --> B )  ->  F : A -1-1-> B )
133, 11, 12mp2an 426 1  |-  F : A -1-1-> B
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   A.wral 2508    C_ wss 3197   {csn 3666    X. cxp 4717   ran crn 4720    Fn wfn 5313   -->wf 5314   -1-1->wf1 5315   -1-1-onto->wf1o 5317   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-f1o 5325  df-fv 5326
This theorem is referenced by:  inlresf1  7228  inrresf1  7229
  Copyright terms: Public domain W3C validator