ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inresflem Unicode version

Theorem inresflem 7164
Description: Lemma for inlresf1 7165 and inrresf1 7166. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
inresflem.1  |-  F : A
-1-1-onto-> ( { X }  X.  A )
inresflem.2  |-  ( x  e.  A  ->  ( F `  x )  e.  B )
Assertion
Ref Expression
inresflem  |-  F : A -1-1-> B
Distinct variable groups:    x, A    x, B    x, F
Allowed substitution hint:    X( x)

Proof of Theorem inresflem
StepHypRef Expression
1 inresflem.1 . . 3  |-  F : A
-1-1-onto-> ( { X }  X.  A )
2 f1of1 5523 . . 3  |-  ( F : A -1-1-onto-> ( { X }  X.  A )  ->  F : A -1-1-> ( { X }  X.  A ) )
31, 2ax-mp 5 . 2  |-  F : A -1-1-> ( { X }  X.  A )
4 f1ofn 5525 . . . 4  |-  ( F : A -1-1-onto-> ( { X }  X.  A )  ->  F  Fn  A )
51, 4ax-mp 5 . . 3  |-  F  Fn  A
6 inresflem.2 . . . . 5  |-  ( x  e.  A  ->  ( F `  x )  e.  B )
76rgen 2559 . . . 4  |-  A. x  e.  A  ( F `  x )  e.  B
8 fnfvrnss 5742 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
95, 7, 8mp2an 426 . . 3  |-  ran  F  C_  B
10 df-f 5276 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
115, 9, 10mpbir2an 945 . 2  |-  F : A
--> B
12 f1ff1 5491 . 2  |-  ( ( F : A -1-1-> ( { X }  X.  A )  /\  F : A --> B )  ->  F : A -1-1-> B )
133, 11, 12mp2an 426 1  |-  F : A -1-1-> B
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   A.wral 2484    C_ wss 3166   {csn 3633    X. cxp 4674   ran crn 4677    Fn wfn 5267   -->wf 5268   -1-1->wf1 5269   -1-1-onto->wf1o 5271   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-f1o 5279  df-fv 5280
This theorem is referenced by:  inlresf1  7165  inrresf1  7166
  Copyright terms: Public domain W3C validator