ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1orescnv GIF version

Theorem f1orescnv 5550
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
f1orescnv ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)

Proof of Theorem f1orescnv
StepHypRef Expression
1 f1ocnv 5547 . . 3 ((𝐹𝑅):𝑅1-1-onto𝑃(𝐹𝑅):𝑃1-1-onto𝑅)
21adantl 277 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅):𝑃1-1-onto𝑅)
3 funcnvres 5356 . . . 4 (Fun 𝐹(𝐹𝑅) = (𝐹 ↾ (𝐹𝑅)))
4 df-ima 4696 . . . . . 6 (𝐹𝑅) = ran (𝐹𝑅)
5 dff1o5 5543 . . . . . . 7 ((𝐹𝑅):𝑅1-1-onto𝑃 ↔ ((𝐹𝑅):𝑅1-1𝑃 ∧ ran (𝐹𝑅) = 𝑃))
65simprbi 275 . . . . . 6 ((𝐹𝑅):𝑅1-1-onto𝑃 → ran (𝐹𝑅) = 𝑃)
74, 6eqtrid 2251 . . . . 5 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹𝑅) = 𝑃)
87reseq2d 4968 . . . 4 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹 ↾ (𝐹𝑅)) = (𝐹𝑃))
93, 8sylan9eq 2259 . . 3 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅) = (𝐹𝑃))
10 f1oeq1 5522 . . 3 ((𝐹𝑅) = (𝐹𝑃) → ((𝐹𝑅):𝑃1-1-onto𝑅 ↔ (𝐹𝑃):𝑃1-1-onto𝑅))
119, 10syl 14 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → ((𝐹𝑅):𝑃1-1-onto𝑅 ↔ (𝐹𝑃):𝑃1-1-onto𝑅))
122, 11mpbid 147 1 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  ccnv 4682  ran crn 4684  cres 4685  cima 4686  Fun wfun 5274  1-1wf1 5277  1-1-ontowf1o 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287
This theorem is referenced by:  f1oresrab  5758
  Copyright terms: Public domain W3C validator