| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1orescnv | GIF version | ||
| Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.) |
| Ref | Expression |
|---|---|
| f1orescnv | ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 5547 | . . 3 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) | |
| 2 | 1 | adantl 277 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) |
| 3 | funcnvres 5356 | . . . 4 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ (𝐹 “ 𝑅))) | |
| 4 | df-ima 4696 | . . . . . 6 ⊢ (𝐹 “ 𝑅) = ran (𝐹 ↾ 𝑅) | |
| 5 | dff1o5 5543 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 ↔ ((𝐹 ↾ 𝑅):𝑅–1-1→𝑃 ∧ ran (𝐹 ↾ 𝑅) = 𝑃)) | |
| 6 | 5 | simprbi 275 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ran (𝐹 ↾ 𝑅) = 𝑃) |
| 7 | 4, 6 | eqtrid 2251 | . . . . 5 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (𝐹 “ 𝑅) = 𝑃) |
| 8 | 7 | reseq2d 4968 | . . . 4 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (◡𝐹 ↾ (𝐹 “ 𝑅)) = (◡𝐹 ↾ 𝑃)) |
| 9 | 3, 8 | sylan9eq 2259 | . . 3 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ 𝑃)) |
| 10 | f1oeq1 5522 | . . 3 ⊢ (◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ 𝑃) → (◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅 ↔ (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅)) | |
| 11 | 9, 10 | syl 14 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅 ↔ (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅)) |
| 12 | 2, 11 | mpbid 147 | 1 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ◡ccnv 4682 ran crn 4684 ↾ cres 4685 “ cima 4686 Fun wfun 5274 –1-1→wf1 5277 –1-1-onto→wf1o 5279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 |
| This theorem is referenced by: f1oresrab 5758 |
| Copyright terms: Public domain | W3C validator |