![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1orescnv | GIF version |
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
f1orescnv | ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 5486 | . . 3 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) | |
2 | 1 | adantl 277 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) |
3 | funcnvres 5301 | . . . 4 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ (𝐹 “ 𝑅))) | |
4 | df-ima 4651 | . . . . . 6 ⊢ (𝐹 “ 𝑅) = ran (𝐹 ↾ 𝑅) | |
5 | dff1o5 5482 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 ↔ ((𝐹 ↾ 𝑅):𝑅–1-1→𝑃 ∧ ran (𝐹 ↾ 𝑅) = 𝑃)) | |
6 | 5 | simprbi 275 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ran (𝐹 ↾ 𝑅) = 𝑃) |
7 | 4, 6 | eqtrid 2232 | . . . . 5 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (𝐹 “ 𝑅) = 𝑃) |
8 | 7 | reseq2d 4919 | . . . 4 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (◡𝐹 ↾ (𝐹 “ 𝑅)) = (◡𝐹 ↾ 𝑃)) |
9 | 3, 8 | sylan9eq 2240 | . . 3 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ 𝑃)) |
10 | f1oeq1 5461 | . . 3 ⊢ (◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ 𝑃) → (◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅 ↔ (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅)) | |
11 | 9, 10 | syl 14 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅 ↔ (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅)) |
12 | 2, 11 | mpbid 147 | 1 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ◡ccnv 4637 ran crn 4639 ↾ cres 4640 “ cima 4641 Fun wfun 5222 –1-1→wf1 5225 –1-1-onto→wf1o 5227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 |
This theorem is referenced by: f1oresrab 5694 |
Copyright terms: Public domain | W3C validator |