![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ovscpbl | GIF version |
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
f1ocpbl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) |
Ref | Expression |
---|---|
f1ovscpbl | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocpbl.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) | |
2 | f1of1 5499 | . . . . 5 ⊢ (𝐹:𝑉–1-1-onto→𝑋 → 𝐹:𝑉–1-1→𝑋) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:𝑉–1-1→𝑋) |
4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹:𝑉–1-1→𝑋) |
5 | simpr2 1006 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
6 | simpr3 1007 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
7 | f1fveq 5815 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝑋 ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) ↔ 𝐵 = 𝐶)) | |
8 | 4, 5, 6, 7 | syl12anc 1247 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) ↔ 𝐵 = 𝐶)) |
9 | oveq2 5926 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶)) | |
10 | 9 | fveq2d 5558 | . 2 ⊢ (𝐵 = 𝐶 → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))) |
11 | 8, 10 | biimtrdi 163 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 –1-1→wf1 5251 –1-1-onto→wf1o 5253 ‘cfv 5254 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-f1o 5261 df-fv 5262 df-ov 5921 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |