ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ovscpbl GIF version

Theorem f1ovscpbl 13219
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
f1ocpbl.f (𝜑𝐹:𝑉1-1-onto𝑋)
Assertion
Ref Expression
f1ovscpbl ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))))

Proof of Theorem f1ovscpbl
StepHypRef Expression
1 f1ocpbl.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝑋)
2 f1of1 5533 . . . . 5 (𝐹:𝑉1-1-onto𝑋𝐹:𝑉1-1𝑋)
31, 2syl 14 . . . 4 (𝜑𝐹:𝑉1-1𝑋)
43adantr 276 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐹:𝑉1-1𝑋)
5 simpr2 1007 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
6 simpr3 1008 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
7 f1fveq 5854 . . 3 ((𝐹:𝑉1-1𝑋 ∧ (𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
84, 5, 6, 7syl12anc 1248 . 2 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
9 oveq2 5965 . . 3 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
109fveq2d 5593 . 2 (𝐵 = 𝐶 → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))
118, 10biimtrdi 163 1 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  1-1wf1 5277  1-1-ontowf1o 5279  cfv 5280  (class class class)co 5957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-f1o 5287  df-fv 5288  df-ov 5960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator