ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f2ndf Unicode version

Theorem f2ndf 6229
Description: The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F into the codomain of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
f2ndf  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )

Proof of Theorem f2ndf
StepHypRef Expression
1 f2ndres 6163 . . 3  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
2 fssxp 5385 . . 3  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
3 fssres 5393 . . 3  |-  ( ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B  /\  F  C_  ( A  X.  B ) )  -> 
( ( 2nd  |`  ( A  X.  B ) )  |`  F ) : F --> B )
41, 2, 3sylancr 414 . 2  |-  ( F : A --> B  -> 
( ( 2nd  |`  ( A  X.  B ) )  |`  F ) : F --> B )
5 resabs1 4938 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  (
( 2nd  |`  ( A  X.  B ) )  |`  F )  =  ( 2nd  |`  F )
)
62, 5syl 14 . . . 4  |-  ( F : A --> B  -> 
( ( 2nd  |`  ( A  X.  B ) )  |`  F )  =  ( 2nd  |`  F )
)
76eqcomd 2183 . . 3  |-  ( F : A --> B  -> 
( 2nd  |`  F )  =  ( ( 2nd  |`  ( A  X.  B
) )  |`  F ) )
87feq1d 5354 . 2  |-  ( F : A --> B  -> 
( ( 2nd  |`  F ) : F --> B  <->  ( ( 2nd  |`  ( A  X.  B ) )  |`  F ) : F --> B ) )
94, 8mpbird 167 1  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    C_ wss 3131    X. cxp 4626    |` cres 4630   -->wf 5214   2ndc2nd 6142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-2nd 6144
This theorem is referenced by:  fo2ndf  6230  f1o2ndf1  6231
  Copyright terms: Public domain W3C validator