ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f2ndf Unicode version

Theorem f2ndf 6311
Description: The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F into the codomain of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
f2ndf  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )

Proof of Theorem f2ndf
StepHypRef Expression
1 f2ndres 6245 . . 3  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
2 fssxp 5442 . . 3  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
3 fssres 5450 . . 3  |-  ( ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B  /\  F  C_  ( A  X.  B ) )  -> 
( ( 2nd  |`  ( A  X.  B ) )  |`  F ) : F --> B )
41, 2, 3sylancr 414 . 2  |-  ( F : A --> B  -> 
( ( 2nd  |`  ( A  X.  B ) )  |`  F ) : F --> B )
5 resabs1 4987 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  (
( 2nd  |`  ( A  X.  B ) )  |`  F )  =  ( 2nd  |`  F )
)
62, 5syl 14 . . . 4  |-  ( F : A --> B  -> 
( ( 2nd  |`  ( A  X.  B ) )  |`  F )  =  ( 2nd  |`  F )
)
76eqcomd 2210 . . 3  |-  ( F : A --> B  -> 
( 2nd  |`  F )  =  ( ( 2nd  |`  ( A  X.  B
) )  |`  F ) )
87feq1d 5411 . 2  |-  ( F : A --> B  -> 
( ( 2nd  |`  F ) : F --> B  <->  ( ( 2nd  |`  ( A  X.  B ) )  |`  F ) : F --> B ) )
94, 8mpbird 167 1  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    C_ wss 3165    X. cxp 4672    |` cres 4676   -->wf 5266   2ndc2nd 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-2nd 6226
This theorem is referenced by:  fo2ndf  6312  f1o2ndf1  6313
  Copyright terms: Public domain W3C validator