ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f2ndf Unicode version

Theorem f2ndf 6330
Description: The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F into the codomain of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
f2ndf  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )

Proof of Theorem f2ndf
StepHypRef Expression
1 f2ndres 6264 . . 3  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
2 fssxp 5458 . . 3  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
3 fssres 5468 . . 3  |-  ( ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B  /\  F  C_  ( A  X.  B ) )  -> 
( ( 2nd  |`  ( A  X.  B ) )  |`  F ) : F --> B )
41, 2, 3sylancr 414 . 2  |-  ( F : A --> B  -> 
( ( 2nd  |`  ( A  X.  B ) )  |`  F ) : F --> B )
5 resabs1 5002 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  (
( 2nd  |`  ( A  X.  B ) )  |`  F )  =  ( 2nd  |`  F )
)
62, 5syl 14 . . . 4  |-  ( F : A --> B  -> 
( ( 2nd  |`  ( A  X.  B ) )  |`  F )  =  ( 2nd  |`  F )
)
76eqcomd 2212 . . 3  |-  ( F : A --> B  -> 
( 2nd  |`  F )  =  ( ( 2nd  |`  ( A  X.  B
) )  |`  F ) )
87feq1d 5427 . 2  |-  ( F : A --> B  -> 
( ( 2nd  |`  F ) : F --> B  <->  ( ( 2nd  |`  ( A  X.  B ) )  |`  F ) : F --> B ) )
94, 8mpbird 167 1  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3170    X. cxp 4686    |` cres 4690   -->wf 5281   2ndc2nd 6243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-2nd 6245
This theorem is referenced by:  fo2ndf  6331  f1o2ndf1  6332
  Copyright terms: Public domain W3C validator