| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvf1o | Unicode version | ||
| Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
| Ref | Expression |
|---|---|
| cnvf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. 2
| |
| 2 | snexg 4268 |
. . . 4
| |
| 3 | cnvexg 5266 |
. . . 4
| |
| 4 | uniexg 4530 |
. . . 4
| |
| 5 | 2, 3, 4 | 3syl 17 |
. . 3
|
| 6 | 5 | adantl 277 |
. 2
|
| 7 | snexg 4268 |
. . . 4
| |
| 8 | cnvexg 5266 |
. . . 4
| |
| 9 | uniexg 4530 |
. . . 4
| |
| 10 | 7, 8, 9 | 3syl 17 |
. . 3
|
| 11 | 10 | adantl 277 |
. 2
|
| 12 | cnvf1olem 6370 |
. . 3
| |
| 13 | relcnv 5106 |
. . . . 5
| |
| 14 | simpr 110 |
. . . . 5
| |
| 15 | cnvf1olem 6370 |
. . . . 5
| |
| 16 | 13, 14, 15 | sylancr 414 |
. . . 4
|
| 17 | dfrel2 5179 |
. . . . . . 7
| |
| 18 | eleq2 2293 |
. . . . . . 7
| |
| 19 | 17, 18 | sylbi 121 |
. . . . . 6
|
| 20 | 19 | anbi1d 465 |
. . . . 5
|
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | 16, 21 | mpbid 147 |
. . 3
|
| 23 | 12, 22 | impbida 598 |
. 2
|
| 24 | 1, 6, 11, 23 | f1od 6209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: tposf12 6415 cnven 6961 xpcomf1o 6984 fsumcnv 11948 fprodcnv 12136 |
| Copyright terms: Public domain | W3C validator |