Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvf1o | Unicode version |
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
Ref | Expression |
---|---|
cnvf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 | |
2 | snexg 4163 | . . . 4 | |
3 | cnvexg 5141 | . . . 4 | |
4 | uniexg 4417 | . . . 4 | |
5 | 2, 3, 4 | 3syl 17 | . . 3 |
6 | 5 | adantl 275 | . 2 |
7 | snexg 4163 | . . . 4 | |
8 | cnvexg 5141 | . . . 4 | |
9 | uniexg 4417 | . . . 4 | |
10 | 7, 8, 9 | 3syl 17 | . . 3 |
11 | 10 | adantl 275 | . 2 |
12 | cnvf1olem 6192 | . . 3 | |
13 | relcnv 4982 | . . . . 5 | |
14 | simpr 109 | . . . . 5 | |
15 | cnvf1olem 6192 | . . . . 5 | |
16 | 13, 14, 15 | sylancr 411 | . . . 4 |
17 | dfrel2 5054 | . . . . . . 7 | |
18 | eleq2 2230 | . . . . . . 7 | |
19 | 17, 18 | sylbi 120 | . . . . . 6 |
20 | 19 | anbi1d 461 | . . . . 5 |
21 | 20 | adantr 274 | . . . 4 |
22 | 16, 21 | mpbid 146 | . . 3 |
23 | 12, 22 | impbida 586 | . 2 |
24 | 1, 6, 11, 23 | f1od 6041 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 csn 3576 cuni 3789 cmpt 4043 ccnv 4603 wrel 4609 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: tposf12 6237 cnven 6774 xpcomf1o 6791 fsumcnv 11378 fprodcnv 11566 |
Copyright terms: Public domain | W3C validator |