ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1o Unicode version

Theorem cnvf1o 6371
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
Distinct variable group:    x, A

Proof of Theorem cnvf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2  |-  ( x  e.  A  |->  U. `' { x } )  =  ( x  e.  A  |->  U. `' { x } )
2 snexg 4268 . . . 4  |-  ( x  e.  A  ->  { x }  e.  _V )
3 cnvexg 5266 . . . 4  |-  ( { x }  e.  _V  ->  `' { x }  e.  _V )
4 uniexg 4530 . . . 4  |-  ( `' { x }  e.  _V  ->  U. `' { x }  e.  _V )
52, 3, 43syl 17 . . 3  |-  ( x  e.  A  ->  U. `' { x }  e.  _V )
65adantl 277 . 2  |-  ( ( Rel  A  /\  x  e.  A )  ->  U. `' { x }  e.  _V )
7 snexg 4268 . . . 4  |-  ( y  e.  `' A  ->  { y }  e.  _V )
8 cnvexg 5266 . . . 4  |-  ( { y }  e.  _V  ->  `' { y }  e.  _V )
9 uniexg 4530 . . . 4  |-  ( `' { y }  e.  _V  ->  U. `' { y }  e.  _V )
107, 8, 93syl 17 . . 3  |-  ( y  e.  `' A  ->  U. `' { y }  e.  _V )
1110adantl 277 . 2  |-  ( ( Rel  A  /\  y  e.  `' A )  ->  U. `' { y }  e.  _V )
12 cnvf1olem 6370 . . 3  |-  ( ( Rel  A  /\  (
x  e.  A  /\  y  =  U. `' {
x } ) )  ->  ( y  e.  `' A  /\  x  =  U. `' { y } ) )
13 relcnv 5106 . . . . 5  |-  Rel  `' A
14 simpr 110 . . . . 5  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( y  e.  `' A  /\  x  =  U. `' { y } ) )
15 cnvf1olem 6370 . . . . 5  |-  ( ( Rel  `' A  /\  ( y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  `' `' A  /\  y  =  U. `' { x } ) )
1613, 14, 15sylancr 414 . . . 4  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  `' `' A  /\  y  =  U. `' { x } ) )
17 dfrel2 5179 . . . . . . 7  |-  ( Rel 
A  <->  `' `' A  =  A
)
18 eleq2 2293 . . . . . . 7  |-  ( `' `' A  =  A  ->  ( x  e.  `' `' A  <->  x  e.  A
) )
1917, 18sylbi 121 . . . . . 6  |-  ( Rel 
A  ->  ( x  e.  `' `' A  <->  x  e.  A
) )
2019anbi1d 465 . . . . 5  |-  ( Rel 
A  ->  ( (
x  e.  `' `' A  /\  y  =  U. `' { x } )  <-> 
( x  e.  A  /\  y  =  U. `' { x } ) ) )
2120adantr 276 . . . 4  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( (
x  e.  `' `' A  /\  y  =  U. `' { x } )  <-> 
( x  e.  A  /\  y  =  U. `' { x } ) ) )
2216, 21mpbid 147 . . 3  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  A  /\  y  =  U. `' { x } ) )
2312, 22impbida 598 . 2  |-  ( Rel 
A  ->  ( (
x  e.  A  /\  y  =  U. `' {
x } )  <->  ( y  e.  `' A  /\  x  =  U. `' { y } ) ) )
241, 6, 11, 23f1od 6209 1  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   U.cuni 3888    |-> cmpt 4145   `'ccnv 4718   Rel wrel 4724   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287
This theorem is referenced by:  tposf12  6415  cnven  6961  xpcomf1o  6984  fsumcnv  11948  fprodcnv  12136
  Copyright terms: Public domain W3C validator