Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvf1o | Unicode version |
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
Ref | Expression |
---|---|
cnvf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 | |
2 | snexg 4170 | . . . 4 | |
3 | cnvexg 5148 | . . . 4 | |
4 | uniexg 4424 | . . . 4 | |
5 | 2, 3, 4 | 3syl 17 | . . 3 |
6 | 5 | adantl 275 | . 2 |
7 | snexg 4170 | . . . 4 | |
8 | cnvexg 5148 | . . . 4 | |
9 | uniexg 4424 | . . . 4 | |
10 | 7, 8, 9 | 3syl 17 | . . 3 |
11 | 10 | adantl 275 | . 2 |
12 | cnvf1olem 6203 | . . 3 | |
13 | relcnv 4989 | . . . . 5 | |
14 | simpr 109 | . . . . 5 | |
15 | cnvf1olem 6203 | . . . . 5 | |
16 | 13, 14, 15 | sylancr 412 | . . . 4 |
17 | dfrel2 5061 | . . . . . . 7 | |
18 | eleq2 2234 | . . . . . . 7 | |
19 | 17, 18 | sylbi 120 | . . . . . 6 |
20 | 19 | anbi1d 462 | . . . . 5 |
21 | 20 | adantr 274 | . . . 4 |
22 | 16, 21 | mpbid 146 | . . 3 |
23 | 12, 22 | impbida 591 | . 2 |
24 | 1, 6, 11, 23 | f1od 6052 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 csn 3583 cuni 3796 cmpt 4050 ccnv 4610 wrel 4616 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: tposf12 6248 cnven 6786 xpcomf1o 6803 fsumcnv 11400 fprodcnv 11588 |
Copyright terms: Public domain | W3C validator |