| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnvf1o | Unicode version | ||
| Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) | 
| Ref | Expression | 
|---|---|
| cnvf1o | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. 2
 | |
| 2 | snexg 4217 | 
. . . 4
 | |
| 3 | cnvexg 5207 | 
. . . 4
 | |
| 4 | uniexg 4474 | 
. . . 4
 | |
| 5 | 2, 3, 4 | 3syl 17 | 
. . 3
 | 
| 6 | 5 | adantl 277 | 
. 2
 | 
| 7 | snexg 4217 | 
. . . 4
 | |
| 8 | cnvexg 5207 | 
. . . 4
 | |
| 9 | uniexg 4474 | 
. . . 4
 | |
| 10 | 7, 8, 9 | 3syl 17 | 
. . 3
 | 
| 11 | 10 | adantl 277 | 
. 2
 | 
| 12 | cnvf1olem 6282 | 
. . 3
 | |
| 13 | relcnv 5047 | 
. . . . 5
 | |
| 14 | simpr 110 | 
. . . . 5
 | |
| 15 | cnvf1olem 6282 | 
. . . . 5
 | |
| 16 | 13, 14, 15 | sylancr 414 | 
. . . 4
 | 
| 17 | dfrel2 5120 | 
. . . . . . 7
 | |
| 18 | eleq2 2260 | 
. . . . . . 7
 | |
| 19 | 17, 18 | sylbi 121 | 
. . . . . 6
 | 
| 20 | 19 | anbi1d 465 | 
. . . . 5
 | 
| 21 | 20 | adantr 276 | 
. . . 4
 | 
| 22 | 16, 21 | mpbid 147 | 
. . 3
 | 
| 23 | 12, 22 | impbida 596 | 
. 2
 | 
| 24 | 1, 6, 11, 23 | f1od 6126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: tposf12 6327 cnven 6867 xpcomf1o 6884 fsumcnv 11602 fprodcnv 11790 | 
| Copyright terms: Public domain | W3C validator |