ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1o Unicode version

Theorem cnvf1o 6193
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
Distinct variable group:    x, A

Proof of Theorem cnvf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . 2  |-  ( x  e.  A  |->  U. `' { x } )  =  ( x  e.  A  |->  U. `' { x } )
2 snexg 4163 . . . 4  |-  ( x  e.  A  ->  { x }  e.  _V )
3 cnvexg 5141 . . . 4  |-  ( { x }  e.  _V  ->  `' { x }  e.  _V )
4 uniexg 4417 . . . 4  |-  ( `' { x }  e.  _V  ->  U. `' { x }  e.  _V )
52, 3, 43syl 17 . . 3  |-  ( x  e.  A  ->  U. `' { x }  e.  _V )
65adantl 275 . 2  |-  ( ( Rel  A  /\  x  e.  A )  ->  U. `' { x }  e.  _V )
7 snexg 4163 . . . 4  |-  ( y  e.  `' A  ->  { y }  e.  _V )
8 cnvexg 5141 . . . 4  |-  ( { y }  e.  _V  ->  `' { y }  e.  _V )
9 uniexg 4417 . . . 4  |-  ( `' { y }  e.  _V  ->  U. `' { y }  e.  _V )
107, 8, 93syl 17 . . 3  |-  ( y  e.  `' A  ->  U. `' { y }  e.  _V )
1110adantl 275 . 2  |-  ( ( Rel  A  /\  y  e.  `' A )  ->  U. `' { y }  e.  _V )
12 cnvf1olem 6192 . . 3  |-  ( ( Rel  A  /\  (
x  e.  A  /\  y  =  U. `' {
x } ) )  ->  ( y  e.  `' A  /\  x  =  U. `' { y } ) )
13 relcnv 4982 . . . . 5  |-  Rel  `' A
14 simpr 109 . . . . 5  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( y  e.  `' A  /\  x  =  U. `' { y } ) )
15 cnvf1olem 6192 . . . . 5  |-  ( ( Rel  `' A  /\  ( y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  `' `' A  /\  y  =  U. `' { x } ) )
1613, 14, 15sylancr 411 . . . 4  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  `' `' A  /\  y  =  U. `' { x } ) )
17 dfrel2 5054 . . . . . . 7  |-  ( Rel 
A  <->  `' `' A  =  A
)
18 eleq2 2230 . . . . . . 7  |-  ( `' `' A  =  A  ->  ( x  e.  `' `' A  <->  x  e.  A
) )
1917, 18sylbi 120 . . . . . 6  |-  ( Rel 
A  ->  ( x  e.  `' `' A  <->  x  e.  A
) )
2019anbi1d 461 . . . . 5  |-  ( Rel 
A  ->  ( (
x  e.  `' `' A  /\  y  =  U. `' { x } )  <-> 
( x  e.  A  /\  y  =  U. `' { x } ) ) )
2120adantr 274 . . . 4  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( (
x  e.  `' `' A  /\  y  =  U. `' { x } )  <-> 
( x  e.  A  /\  y  =  U. `' { x } ) ) )
2216, 21mpbid 146 . . 3  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  A  /\  y  =  U. `' { x } ) )
2312, 22impbida 586 . 2  |-  ( Rel 
A  ->  ( (
x  e.  A  /\  y  =  U. `' {
x } )  <->  ( y  e.  `' A  /\  x  =  U. `' { y } ) ) )
241, 6, 11, 23f1od 6041 1  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   U.cuni 3789    |-> cmpt 4043   `'ccnv 4603   Rel wrel 4609   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by:  tposf12  6237  cnven  6774  xpcomf1o  6791  fsumcnv  11378  fprodcnv  11566
  Copyright terms: Public domain W3C validator