ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1o Unicode version

Theorem cnvf1o 6228
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
Distinct variable group:    x, A

Proof of Theorem cnvf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . 2  |-  ( x  e.  A  |->  U. `' { x } )  =  ( x  e.  A  |->  U. `' { x } )
2 snexg 4186 . . . 4  |-  ( x  e.  A  ->  { x }  e.  _V )
3 cnvexg 5168 . . . 4  |-  ( { x }  e.  _V  ->  `' { x }  e.  _V )
4 uniexg 4441 . . . 4  |-  ( `' { x }  e.  _V  ->  U. `' { x }  e.  _V )
52, 3, 43syl 17 . . 3  |-  ( x  e.  A  ->  U. `' { x }  e.  _V )
65adantl 277 . 2  |-  ( ( Rel  A  /\  x  e.  A )  ->  U. `' { x }  e.  _V )
7 snexg 4186 . . . 4  |-  ( y  e.  `' A  ->  { y }  e.  _V )
8 cnvexg 5168 . . . 4  |-  ( { y }  e.  _V  ->  `' { y }  e.  _V )
9 uniexg 4441 . . . 4  |-  ( `' { y }  e.  _V  ->  U. `' { y }  e.  _V )
107, 8, 93syl 17 . . 3  |-  ( y  e.  `' A  ->  U. `' { y }  e.  _V )
1110adantl 277 . 2  |-  ( ( Rel  A  /\  y  e.  `' A )  ->  U. `' { y }  e.  _V )
12 cnvf1olem 6227 . . 3  |-  ( ( Rel  A  /\  (
x  e.  A  /\  y  =  U. `' {
x } ) )  ->  ( y  e.  `' A  /\  x  =  U. `' { y } ) )
13 relcnv 5008 . . . . 5  |-  Rel  `' A
14 simpr 110 . . . . 5  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( y  e.  `' A  /\  x  =  U. `' { y } ) )
15 cnvf1olem 6227 . . . . 5  |-  ( ( Rel  `' A  /\  ( y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  `' `' A  /\  y  =  U. `' { x } ) )
1613, 14, 15sylancr 414 . . . 4  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  `' `' A  /\  y  =  U. `' { x } ) )
17 dfrel2 5081 . . . . . . 7  |-  ( Rel 
A  <->  `' `' A  =  A
)
18 eleq2 2241 . . . . . . 7  |-  ( `' `' A  =  A  ->  ( x  e.  `' `' A  <->  x  e.  A
) )
1917, 18sylbi 121 . . . . . 6  |-  ( Rel 
A  ->  ( x  e.  `' `' A  <->  x  e.  A
) )
2019anbi1d 465 . . . . 5  |-  ( Rel 
A  ->  ( (
x  e.  `' `' A  /\  y  =  U. `' { x } )  <-> 
( x  e.  A  /\  y  =  U. `' { x } ) ) )
2120adantr 276 . . . 4  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( (
x  e.  `' `' A  /\  y  =  U. `' { x } )  <-> 
( x  e.  A  /\  y  =  U. `' { x } ) ) )
2216, 21mpbid 147 . . 3  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  A  /\  y  =  U. `' { x } ) )
2312, 22impbida 596 . 2  |-  ( Rel 
A  ->  ( (
x  e.  A  /\  y  =  U. `' {
x } )  <->  ( y  e.  `' A  /\  x  =  U. `' { y } ) ) )
241, 6, 11, 23f1od 6076 1  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2739   {csn 3594   U.cuni 3811    |-> cmpt 4066   `'ccnv 4627   Rel wrel 4633   -1-1-onto->wf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144
This theorem is referenced by:  tposf12  6272  cnven  6810  xpcomf1o  6827  fsumcnv  11447  fprodcnv  11635
  Copyright terms: Public domain W3C validator