ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst Unicode version

Theorem fconst 5450
Description: A cross product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fconst.1  |-  B  e. 
_V
Assertion
Ref Expression
fconst  |-  ( A  X.  { B }
) : A --> { B }

Proof of Theorem fconst
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fconst.1 . . 3  |-  B  e. 
_V
2 fconstmpt 4707 . . 3  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
31, 2fnmpti 5383 . 2  |-  ( A  X.  { B }
)  Fn  A
4 rnxpss 5098 . 2  |-  ran  ( A  X.  { B }
)  C_  { B }
5 df-f 5259 . 2  |-  ( ( A  X.  { B } ) : A --> { B }  <->  ( ( A  X.  { B }
)  Fn  A  /\  ran  ( A  X.  { B } )  C_  { B } ) )
63, 4, 5mpbir2an 944 1  |-  ( A  X.  { B }
) : A --> { B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   _Vcvv 2760    C_ wss 3154   {csn 3619    X. cxp 4658   ran crn 4661    Fn wfn 5250   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  fconstg  5451  exmidfodomrlemim  7263  ser0f  10608  prodf1f  11689  dvexp  14890
  Copyright terms: Public domain W3C validator