ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst Unicode version

Theorem fconst 5523
Description: A cross product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fconst.1  |-  B  e. 
_V
Assertion
Ref Expression
fconst  |-  ( A  X.  { B }
) : A --> { B }

Proof of Theorem fconst
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fconst.1 . . 3  |-  B  e. 
_V
2 fconstmpt 4766 . . 3  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
31, 2fnmpti 5452 . 2  |-  ( A  X.  { B }
)  Fn  A
4 rnxpss 5160 . 2  |-  ran  ( A  X.  { B }
)  C_  { B }
5 df-f 5322 . 2  |-  ( ( A  X.  { B } ) : A --> { B }  <->  ( ( A  X.  { B }
)  Fn  A  /\  ran  ( A  X.  { B } )  C_  { B } ) )
63, 4, 5mpbir2an 948 1  |-  ( A  X.  { B }
) : A --> { B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666    X. cxp 4717   ran crn 4720    Fn wfn 5313   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  fconstg  5524  exmidfodomrlemim  7387  ser0f  10764  prodf1f  12062  dvexp  15393
  Copyright terms: Public domain W3C validator