| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconst | GIF version | ||
| Description: A cross product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fconst.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fconst | ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fconstmpt 4726 | . . 3 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 5410 | . 2 ⊢ (𝐴 × {𝐵}) Fn 𝐴 |
| 4 | rnxpss 5119 | . 2 ⊢ ran (𝐴 × {𝐵}) ⊆ {𝐵} | |
| 5 | df-f 5280 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} ↔ ((𝐴 × {𝐵}) Fn 𝐴 ∧ ran (𝐴 × {𝐵}) ⊆ {𝐵})) | |
| 6 | 3, 4, 5 | mpbir2an 945 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶{𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ⊆ wss 3167 {csn 3634 × cxp 4677 ran crn 4680 Fn wfn 5271 ⟶wf 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-fun 5278 df-fn 5279 df-f 5280 |
| This theorem is referenced by: fconstg 5479 exmidfodomrlemim 7316 ser0f 10686 prodf1f 11898 dvexp 15227 |
| Copyright terms: Public domain | W3C validator |