ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst4m Unicode version

Theorem fconst4m 5827
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
fconst4m  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fconst4m
StepHypRef Expression
1 fconst3m 5826 . 2  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) ) )
2 cnvimass 5064 . . . . . 6  |-  ( `' F " { B } )  C_  dom  F
3 fndm 5392 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
42, 3sseqtrid 3251 . . . . 5  |-  ( F  Fn  A  ->  ( `' F " { B } )  C_  A
)
54biantrurd 305 . . . 4  |-  ( F  Fn  A  ->  ( A  C_  ( `' F " { B } )  <-> 
( ( `' F " { B } ) 
C_  A  /\  A  C_  ( `' F " { B } ) ) ) )
6 eqss 3216 . . . 4  |-  ( ( `' F " { B } )  =  A  <-> 
( ( `' F " { B } ) 
C_  A  /\  A  C_  ( `' F " { B } ) ) )
75, 6bitr4di 198 . . 3  |-  ( F  Fn  A  ->  ( A  C_  ( `' F " { B } )  <-> 
( `' F " { B } )  =  A ) )
87pm5.32i 454 . 2  |-  ( ( F  Fn  A  /\  A  C_  ( `' F " { B } ) )  <->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) )
91, 8bitrdi 196 1  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178    C_ wss 3174   {csn 3643   `'ccnv 4692   dom cdm 4693   "cima 4696    Fn wfn 5285   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator