ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst4m Unicode version

Theorem fconst4m 5858
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
fconst4m  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fconst4m
StepHypRef Expression
1 fconst3m 5857 . 2  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) ) )
2 cnvimass 5090 . . . . . 6  |-  ( `' F " { B } )  C_  dom  F
3 fndm 5419 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
42, 3sseqtrid 3274 . . . . 5  |-  ( F  Fn  A  ->  ( `' F " { B } )  C_  A
)
54biantrurd 305 . . . 4  |-  ( F  Fn  A  ->  ( A  C_  ( `' F " { B } )  <-> 
( ( `' F " { B } ) 
C_  A  /\  A  C_  ( `' F " { B } ) ) ) )
6 eqss 3239 . . . 4  |-  ( ( `' F " { B } )  =  A  <-> 
( ( `' F " { B } ) 
C_  A  /\  A  C_  ( `' F " { B } ) ) )
75, 6bitr4di 198 . . 3  |-  ( F  Fn  A  ->  ( A  C_  ( `' F " { B } )  <-> 
( `' F " { B } )  =  A ) )
87pm5.32i 454 . 2  |-  ( ( F  Fn  A  /\  A  C_  ( `' F " { B } ) )  <->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) )
91, 8bitrdi 196 1  |-  ( E. x  x  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200    C_ wss 3197   {csn 3666   `'ccnv 4717   dom cdm 4718   "cima 4721    Fn wfn 5312   -->wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator