| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpttd | Unicode version | ||
| Description: Version of fmptd 5747 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| Ref | Expression |
|---|---|
| fmpttd.1 |
|
| Ref | Expression |
|---|---|
| fmpttd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpttd.1 |
. 2
| |
| 2 | eqid 2206 |
. 2
| |
| 3 | 1, 2 | fmptd 5747 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 |
| This theorem is referenced by: fmpt3d 5749 pw2f1odclem 6946 ctmlemr 7225 ctssdclemn0 7227 ctssdc 7230 infnninf 7241 nnnninf 7243 ismkvnex 7272 seqf1og 10688 ccatcl 11072 swrdclg 11126 swrdwrdsymbg 11140 fsumf1o 11776 isumss 11777 fisumss 11778 fsumcl2lem 11784 fsumadd 11792 isumclim3 11809 isummulc2 11812 fsummulc2 11834 isumshft 11876 prodfdivap 11933 fprodf1o 11974 prodssdc 11975 fprodssdc 11976 fprodmul 11977 gsumfzz 13402 gsumfzmptfidmadd 13750 gsumfzconst 13752 gsumfzmhm2 13755 srglmhm 13830 srgrmhm 13831 ringlghm 13898 ringrghm 13899 gsumfzfsumlemm 14424 expghmap 14444 fczpsrbag 14508 mplsubgfilemm 14535 tgrest 14716 resttopon 14718 rest0 14726 cnpfval 14742 txcnp 14818 uptx 14821 cnmpt11 14830 bdxmet 15048 cncfmptc 15143 cncfmptid 15144 cdivcncfap 15151 mulcncf 15155 maxcncf 15162 mincncf 15163 ivthreinc 15192 hovercncf 15193 limcmpted 15210 dvfgg 15235 dvcnp2cntop 15246 dvmulxxbr 15249 dvcjbr 15255 dvexp 15258 dvrecap 15260 dvmptclx 15265 dvmptaddx 15266 dvmptmulx 15267 dvmptcjx 15271 dvef 15274 elply2 15282 plyf 15284 elplyd 15288 dvply2g 15313 lgseisenlem3 15624 lgseisenlem4 15625 incistruhgr 15761 2omap 16071 pw1map 16073 subctctexmid 16078 nninffeq 16098 iswomni0 16131 dceqnconst 16140 dcapnconst 16141 |
| Copyright terms: Public domain | W3C validator |