| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpttd | Unicode version | ||
| Description: Version of fmptd 5719 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| Ref | Expression |
|---|---|
| fmpttd.1 |
|
| Ref | Expression |
|---|---|
| fmpttd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpttd.1 |
. 2
| |
| 2 | eqid 2196 |
. 2
| |
| 3 | 1, 2 | fmptd 5719 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 |
| This theorem is referenced by: fmpt3d 5721 pw2f1odclem 6904 ctmlemr 7183 ctssdclemn0 7185 ctssdc 7188 infnninf 7199 nnnninf 7201 ismkvnex 7230 seqf1og 10630 fsumf1o 11572 isumss 11573 fisumss 11574 fsumcl2lem 11580 fsumadd 11588 isumclim3 11605 isummulc2 11608 fsummulc2 11630 isumshft 11672 prodfdivap 11729 fprodf1o 11770 prodssdc 11771 fprodssdc 11772 fprodmul 11773 gsumfzz 13197 gsumfzmptfidmadd 13545 gsumfzconst 13547 gsumfzmhm2 13550 srglmhm 13625 srgrmhm 13626 ringlghm 13693 ringrghm 13694 gsumfzfsumlemm 14219 expghmap 14239 fczpsrbag 14301 tgrest 14489 resttopon 14491 rest0 14499 cnpfval 14515 txcnp 14591 uptx 14594 cnmpt11 14603 bdxmet 14821 cncfmptc 14916 cncfmptid 14917 cdivcncfap 14924 mulcncf 14928 maxcncf 14935 mincncf 14936 ivthreinc 14965 hovercncf 14966 limcmpted 14983 dvfgg 15008 dvcnp2cntop 15019 dvmulxxbr 15022 dvcjbr 15028 dvexp 15031 dvrecap 15033 dvmptclx 15038 dvmptaddx 15039 dvmptmulx 15040 dvmptcjx 15044 dvef 15047 elply2 15055 plyf 15057 elplyd 15061 dvply2g 15086 lgseisenlem3 15397 lgseisenlem4 15398 2omap 15726 subctctexmid 15731 nninffeq 15751 iswomni0 15782 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |