| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpttd | Unicode version | ||
| Description: Version of fmptd 5728 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| Ref | Expression |
|---|---|
| fmpttd.1 |
|
| Ref | Expression |
|---|---|
| fmpttd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpttd.1 |
. 2
| |
| 2 | eqid 2204 |
. 2
| |
| 3 | 1, 2 | fmptd 5728 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 |
| This theorem is referenced by: fmpt3d 5730 pw2f1odclem 6913 ctmlemr 7192 ctssdclemn0 7194 ctssdc 7197 infnninf 7208 nnnninf 7210 ismkvnex 7239 seqf1og 10647 ccatcl 11024 fsumf1o 11620 isumss 11621 fisumss 11622 fsumcl2lem 11628 fsumadd 11636 isumclim3 11653 isummulc2 11656 fsummulc2 11678 isumshft 11720 prodfdivap 11777 fprodf1o 11818 prodssdc 11819 fprodssdc 11820 fprodmul 11821 gsumfzz 13245 gsumfzmptfidmadd 13593 gsumfzconst 13595 gsumfzmhm2 13598 srglmhm 13673 srgrmhm 13674 ringlghm 13741 ringrghm 13742 gsumfzfsumlemm 14267 expghmap 14287 fczpsrbag 14351 mplsubgfilemm 14378 tgrest 14559 resttopon 14561 rest0 14569 cnpfval 14585 txcnp 14661 uptx 14664 cnmpt11 14673 bdxmet 14891 cncfmptc 14986 cncfmptid 14987 cdivcncfap 14994 mulcncf 14998 maxcncf 15005 mincncf 15006 ivthreinc 15035 hovercncf 15036 limcmpted 15053 dvfgg 15078 dvcnp2cntop 15089 dvmulxxbr 15092 dvcjbr 15098 dvexp 15101 dvrecap 15103 dvmptclx 15108 dvmptaddx 15109 dvmptmulx 15110 dvmptcjx 15114 dvef 15117 elply2 15125 plyf 15127 elplyd 15131 dvply2g 15156 lgseisenlem3 15467 lgseisenlem4 15468 2omap 15796 subctctexmid 15801 nninffeq 15821 iswomni0 15854 dceqnconst 15863 dcapnconst 15864 |
| Copyright terms: Public domain | W3C validator |