![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fmpttd | Unicode version |
Description: Version of fmptd 5712 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
Ref | Expression |
---|---|
fmpttd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fmpttd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpttd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2193 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | fmptd 5712 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 |
This theorem is referenced by: fmpt3d 5714 pw2f1odclem 6890 ctmlemr 7167 ctssdclemn0 7169 ctssdc 7172 infnninf 7183 nnnninf 7185 ismkvnex 7214 seqf1og 10592 fsumf1o 11533 isumss 11534 fisumss 11535 fsumcl2lem 11541 fsumadd 11549 isumclim3 11566 isummulc2 11569 fsummulc2 11591 isumshft 11633 prodfdivap 11690 fprodf1o 11731 prodssdc 11732 fprodssdc 11733 fprodmul 11734 gsumfzz 13067 gsumfzmptfidmadd 13409 gsumfzconst 13411 gsumfzmhm2 13414 srglmhm 13489 srgrmhm 13490 ringlghm 13557 ringrghm 13558 gsumfzfsumlemm 14075 expghmap 14095 fczpsrbag 14157 tgrest 14337 resttopon 14339 rest0 14347 cnpfval 14363 txcnp 14439 uptx 14442 cnmpt11 14451 bdxmet 14669 cncfmptc 14750 cncfmptid 14751 cdivcncfap 14758 mulcncf 14762 maxcncf 14769 mincncf 14770 ivthreinc 14799 hovercncf 14800 limcmpted 14817 dvfgg 14842 dvcnp2cntop 14848 dvmulxxbr 14851 dvcjbr 14857 dvexp 14860 dvrecap 14862 dvmptclx 14865 dvmptaddx 14866 dvmptmulx 14867 dvmptcjx 14871 dvef 14873 elply2 14881 plyf 14883 elplyd 14887 lgseisenlem3 15188 lgseisenlem4 15189 subctctexmid 15491 nninffeq 15510 iswomni0 15541 dceqnconst 15550 dcapnconst 15551 |
Copyright terms: Public domain | W3C validator |