| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpttd | Unicode version | ||
| Description: Version of fmptd 5788 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| Ref | Expression |
|---|---|
| fmpttd.1 |
|
| Ref | Expression |
|---|---|
| fmpttd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpttd.1 |
. 2
| |
| 2 | eqid 2229 |
. 2
| |
| 3 | 1, 2 | fmptd 5788 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 |
| This theorem is referenced by: fmpt3d 5790 pw2f1odclem 6991 ctmlemr 7271 ctssdclemn0 7273 ctssdc 7276 infnninf 7287 nnnninf 7289 ismkvnex 7318 seqf1og 10738 ccatcl 11123 swrdclg 11177 swrdwrdsymbg 11191 fsumf1o 11896 isumss 11897 fisumss 11898 fsumcl2lem 11904 fsumadd 11912 isumclim3 11929 isummulc2 11932 fsummulc2 11954 isumshft 11996 prodfdivap 12053 fprodf1o 12094 prodssdc 12095 fprodssdc 12096 fprodmul 12097 gsumfzz 13523 gsumfzmptfidmadd 13871 gsumfzconst 13873 gsumfzmhm2 13876 srglmhm 13951 srgrmhm 13952 ringlghm 14019 ringrghm 14020 gsumfzfsumlemm 14545 expghmap 14565 fczpsrbag 14629 mplsubgfilemm 14656 tgrest 14837 resttopon 14839 rest0 14847 cnpfval 14863 txcnp 14939 uptx 14942 cnmpt11 14951 bdxmet 15169 cncfmptc 15264 cncfmptid 15265 cdivcncfap 15272 mulcncf 15276 maxcncf 15283 mincncf 15284 ivthreinc 15313 hovercncf 15314 limcmpted 15331 dvfgg 15356 dvcnp2cntop 15367 dvmulxxbr 15370 dvcjbr 15376 dvexp 15379 dvrecap 15381 dvmptclx 15386 dvmptaddx 15387 dvmptmulx 15388 dvmptcjx 15392 dvef 15395 elply2 15403 plyf 15405 elplyd 15409 dvply2g 15434 lgseisenlem3 15745 lgseisenlem4 15746 incistruhgr 15884 2omap 16318 pw1map 16320 subctctexmid 16325 nninffeq 16345 iswomni0 16378 dceqnconst 16387 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |