| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fmpttd | Unicode version | ||
| Description: Version of fmptd 5716 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) | 
| Ref | Expression | 
|---|---|
| fmpttd.1 | 
 | 
| Ref | Expression | 
|---|---|
| fmpttd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fmpttd.1 | 
. 2
 | |
| 2 | eqid 2196 | 
. 2
 | |
| 3 | 1, 2 | fmptd 5716 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 | 
| This theorem is referenced by: fmpt3d 5718 pw2f1odclem 6895 ctmlemr 7174 ctssdclemn0 7176 ctssdc 7179 infnninf 7190 nnnninf 7192 ismkvnex 7221 seqf1og 10613 fsumf1o 11555 isumss 11556 fisumss 11557 fsumcl2lem 11563 fsumadd 11571 isumclim3 11588 isummulc2 11591 fsummulc2 11613 isumshft 11655 prodfdivap 11712 fprodf1o 11753 prodssdc 11754 fprodssdc 11755 fprodmul 11756 gsumfzz 13127 gsumfzmptfidmadd 13469 gsumfzconst 13471 gsumfzmhm2 13474 srglmhm 13549 srgrmhm 13550 ringlghm 13617 ringrghm 13618 gsumfzfsumlemm 14143 expghmap 14163 fczpsrbag 14225 tgrest 14405 resttopon 14407 rest0 14415 cnpfval 14431 txcnp 14507 uptx 14510 cnmpt11 14519 bdxmet 14737 cncfmptc 14832 cncfmptid 14833 cdivcncfap 14840 mulcncf 14844 maxcncf 14851 mincncf 14852 ivthreinc 14881 hovercncf 14882 limcmpted 14899 dvfgg 14924 dvcnp2cntop 14935 dvmulxxbr 14938 dvcjbr 14944 dvexp 14947 dvrecap 14949 dvmptclx 14954 dvmptaddx 14955 dvmptmulx 14956 dvmptcjx 14960 dvef 14963 elply2 14971 plyf 14973 elplyd 14977 dvply2g 15002 lgseisenlem3 15313 lgseisenlem4 15314 subctctexmid 15645 nninffeq 15664 iswomni0 15695 dceqnconst 15704 dcapnconst 15705 | 
| Copyright terms: Public domain | W3C validator |