| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpttd | Unicode version | ||
| Description: Version of fmptd 5719 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| Ref | Expression |
|---|---|
| fmpttd.1 |
|
| Ref | Expression |
|---|---|
| fmpttd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpttd.1 |
. 2
| |
| 2 | eqid 2196 |
. 2
| |
| 3 | 1, 2 | fmptd 5719 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 |
| This theorem is referenced by: fmpt3d 5721 pw2f1odclem 6904 ctmlemr 7183 ctssdclemn0 7185 ctssdc 7188 infnninf 7199 nnnninf 7201 ismkvnex 7230 seqf1og 10632 fsumf1o 11574 isumss 11575 fisumss 11576 fsumcl2lem 11582 fsumadd 11590 isumclim3 11607 isummulc2 11610 fsummulc2 11632 isumshft 11674 prodfdivap 11731 fprodf1o 11772 prodssdc 11773 fprodssdc 11774 fprodmul 11775 gsumfzz 13199 gsumfzmptfidmadd 13547 gsumfzconst 13549 gsumfzmhm2 13552 srglmhm 13627 srgrmhm 13628 ringlghm 13695 ringrghm 13696 gsumfzfsumlemm 14221 expghmap 14241 fczpsrbag 14305 mplsubgfilemm 14332 tgrest 14513 resttopon 14515 rest0 14523 cnpfval 14539 txcnp 14615 uptx 14618 cnmpt11 14627 bdxmet 14845 cncfmptc 14940 cncfmptid 14941 cdivcncfap 14948 mulcncf 14952 maxcncf 14959 mincncf 14960 ivthreinc 14989 hovercncf 14990 limcmpted 15007 dvfgg 15032 dvcnp2cntop 15043 dvmulxxbr 15046 dvcjbr 15052 dvexp 15055 dvrecap 15057 dvmptclx 15062 dvmptaddx 15063 dvmptmulx 15064 dvmptcjx 15068 dvef 15071 elply2 15079 plyf 15081 elplyd 15085 dvply2g 15110 lgseisenlem3 15421 lgseisenlem4 15422 2omap 15750 subctctexmid 15755 nninffeq 15775 iswomni0 15808 dceqnconst 15817 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |