ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvf Unicode version

Theorem grpinvf 13575
Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
grpinvcl.b  |-  B  =  ( Base `  G
)
grpinvcl.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvf  |-  ( G  e.  Grp  ->  N : B --> B )

Proof of Theorem grpinvf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvcl.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 eqid 2229 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 grpinvcl.n . . 3  |-  N  =  ( invg `  G )
51, 2, 3, 4grpinvfvalg 13570 . 2  |-  ( G  e.  Grp  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) ) )
61, 2, 3grpinveu 13566 . . 3  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E! y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) )
7 riotacl 5969 . . 3  |-  ( E! y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
)  ->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  B
)
86, 7syl 14 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) )  e.  B )
95, 8fmpt3d 5790 1  |-  ( G  e.  Grp  ->  N : B --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E!wreu 2510   -->wf 5313   ` cfv 5317   iota_crio 5952  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Grpcgrp 13528   invgcminusg 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532
This theorem is referenced by:  grpinvcl  13576  isgrpinv  13582  grpinvcnv  13596  grpinvf1o  13598  grp1inv  13635  pwsinvg  13640  pwssub  13641  invghm  13861
  Copyright terms: Public domain W3C validator