Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsellemeqinf | Unicode version |
Description: Lemma for nninfsel 13972. (Contributed by Jim Kingdon, 9-Aug-2022.) |
Ref | Expression |
---|---|
nninfsel.e | ℕ∞ |
nninfsel.q | ℕ∞ |
nninfsel.1 |
Ref | Expression |
---|---|
nninfsellemeqinf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfsel.e | . . . . . . 7 ℕ∞ | |
2 | 1 | nninfself 13968 | . . . . . 6 ℕ∞ℕ∞ |
3 | 2 | a1i 9 | . . . . 5 ℕ∞ℕ∞ |
4 | nninfsel.q | . . . . 5 ℕ∞ | |
5 | 3, 4 | ffvelrnd 5629 | . . . 4 ℕ∞ |
6 | nninff 7095 | . . . 4 ℕ∞ | |
7 | 5, 6 | syl 14 | . . 3 |
8 | 7 | ffnd 5346 | . 2 |
9 | 1onn 6496 | . . . . 5 | |
10 | fnconstg 5393 | . . . . 5 | |
11 | 9, 10 | ax-mp 5 | . . . 4 |
12 | fconstmpt 4656 | . . . . 5 | |
13 | 12 | fneq1i 5290 | . . . 4 |
14 | 11, 13 | mpbi 144 | . . 3 |
15 | 14 | a1i 9 | . 2 |
16 | elequ2 2146 | . . . . . . . . . 10 | |
17 | 16 | ifbid 3546 | . . . . . . . . 9 |
18 | 17 | mpteq2dv 4078 | . . . . . . . 8 |
19 | 18 | fveq2d 5498 | . . . . . . 7 |
20 | 19 | eqeq1d 2179 | . . . . . 6 |
21 | 4 | adantr 274 | . . . . . . . . 9 ℕ∞ |
22 | nninfsel.1 | . . . . . . . . . 10 | |
23 | 22 | adantr 274 | . . . . . . . . 9 |
24 | simpr 109 | . . . . . . . . 9 | |
25 | 1, 21, 23, 24 | nninfsellemqall 13970 | . . . . . . . 8 |
26 | 25 | ralrimiva 2543 | . . . . . . 7 |
27 | 26 | ad2antrr 485 | . . . . . 6 |
28 | simpr 109 | . . . . . . 7 | |
29 | peano2 4577 | . . . . . . . 8 | |
30 | 29 | ad2antlr 486 | . . . . . . 7 |
31 | elnn 4588 | . . . . . . 7 | |
32 | 28, 30, 31 | syl2anc 409 | . . . . . 6 |
33 | 20, 27, 32 | rspcdva 2839 | . . . . 5 |
34 | 33 | ralrimiva 2543 | . . . 4 |
35 | 34 | iftrued 3532 | . . 3 |
36 | omex 4575 | . . . . . . 7 | |
37 | 36 | mptex 5719 | . . . . . 6 |
38 | 37 | a1i 9 | . . . . 5 |
39 | fveq1 5493 | . . . . . . . . . 10 | |
40 | 39 | eqeq1d 2179 | . . . . . . . . 9 |
41 | 40 | ralbidv 2470 | . . . . . . . 8 |
42 | 41 | ifbid 3546 | . . . . . . 7 |
43 | 42 | mpteq2dv 4078 | . . . . . 6 |
44 | 43, 1 | fvmptg 5570 | . . . . 5 ℕ∞ |
45 | 21, 38, 44 | syl2anc 409 | . . . 4 |
46 | suceq 4385 | . . . . . . 7 | |
47 | 46 | adantl 275 | . . . . . 6 |
48 | 47 | raleqdv 2671 | . . . . 5 |
49 | 48 | ifbid 3546 | . . . 4 |
50 | 35, 9 | eqeltrdi 2261 | . . . 4 |
51 | 45, 49, 24, 50 | fvmptd 5575 | . . 3 |
52 | eqidd 2171 | . . . . . 6 | |
53 | eqid 2170 | . . . . . 6 | |
54 | 52, 53 | fvmptg 5570 | . . . . 5 |
55 | 9, 54 | mpan2 423 | . . . 4 |
56 | 55 | adantl 275 | . . 3 |
57 | 35, 51, 56 | 3eqtr4d 2213 | . 2 |
58 | 8, 15, 57 | eqfnfvd 5594 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 cvv 2730 c0 3414 cif 3525 csn 3581 cmpt 4048 csuc 4348 com 4572 cxp 4607 wfn 5191 wf 5192 cfv 5196 (class class class)co 5850 c1o 6385 c2o 6386 cmap 6622 ℕ∞xnninf 7092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1o 6392 df-2o 6393 df-map 6624 df-nninf 7093 |
This theorem is referenced by: nninfsel 13972 |
Copyright terms: Public domain | W3C validator |