Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemeqinf Unicode version

Theorem nninfsellemeqinf 13896
Description: Lemma for nninfsel 13897. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
nninfsel.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfsel.1  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
Assertion
Ref Expression
nninfsellemeqinf  |-  ( ph  ->  ( E `  Q
)  =  ( i  e.  om  |->  1o ) )
Distinct variable groups:    Q, k, n, q    i, k, n, q    ph, k, n
Allowed substitution hints:    ph( i, q)    Q( i)    E( i, k, n, q)

Proof of Theorem nninfsellemeqinf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . . . . . . 7  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
21nninfself 13893 . . . . . 6  |-  E :
( 2o  ^m ) -->
32a1i 9 . . . . 5  |-  ( ph  ->  E : ( 2o 
^m )
--> )
4 nninfsel.q . . . . 5  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
53, 4ffvelrnd 5621 . . . 4  |-  ( ph  ->  ( E `  Q
)  e. )
6 nninff 7087 . . . 4  |-  ( ( E `  Q )  e.  ->  ( E `  Q
) : om --> 2o )
75, 6syl 14 . . 3  |-  ( ph  ->  ( E `  Q
) : om --> 2o )
87ffnd 5338 . 2  |-  ( ph  ->  ( E `  Q
)  Fn  om )
9 1onn 6488 . . . . 5  |-  1o  e.  om
10 fnconstg 5385 . . . . 5  |-  ( 1o  e.  om  ->  ( om  X.  { 1o }
)  Fn  om )
119, 10ax-mp 5 . . . 4  |-  ( om 
X.  { 1o }
)  Fn  om
12 fconstmpt 4651 . . . . 5  |-  ( om 
X.  { 1o }
)  =  ( i  e.  om  |->  1o )
1312fneq1i 5282 . . . 4  |-  ( ( om  X.  { 1o } )  Fn  om  <->  ( i  e.  om  |->  1o )  Fn  om )
1411, 13mpbi 144 . . 3  |-  ( i  e.  om  |->  1o )  Fn  om
1514a1i 9 . 2  |-  ( ph  ->  ( i  e.  om  |->  1o )  Fn  om )
16 elequ2 2141 . . . . . . . . . 10  |-  ( j  =  k  ->  (
i  e.  j  <->  i  e.  k ) )
1716ifbid 3541 . . . . . . . . 9  |-  ( j  =  k  ->  if ( i  e.  j ,  1o ,  (/) )  =  if (
i  e.  k ,  1o ,  (/) ) )
1817mpteq2dv 4073 . . . . . . . 8  |-  ( j  =  k  ->  (
i  e.  om  |->  if ( i  e.  j ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )
1918fveq2d 5490 . . . . . . 7  |-  ( j  =  k  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  j ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) ) )
2019eqeq1d 2174 . . . . . 6  |-  ( j  =  k  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  j ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
214adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  om )  ->  Q  e.  ( 2o  ^m ) )
22 nninfsel.1 . . . . . . . . . 10  |-  ( ph  ->  ( Q `  ( E `  Q )
)  =  1o )
2322adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  om )  ->  ( Q `  ( E `  Q
) )  =  1o )
24 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  om )  ->  j  e.  om )
251, 21, 23, 24nninfsellemqall 13895 . . . . . . . 8  |-  ( (
ph  /\  j  e.  om )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  j ,  1o ,  (/) ) ) )  =  1o )
2625ralrimiva 2539 . . . . . . 7  |-  ( ph  ->  A. j  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  j ,  1o ,  (/) ) ) )  =  1o )
2726ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  j  e.  om )  /\  k  e.  suc  j )  ->  A. j  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  j ,  1o ,  (/) ) ) )  =  1o )
28 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  om )  /\  k  e.  suc  j )  -> 
k  e.  suc  j
)
29 peano2 4572 . . . . . . . 8  |-  ( j  e.  om  ->  suc  j  e.  om )
3029ad2antlr 481 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  om )  /\  k  e.  suc  j )  ->  suc  j  e.  om )
31 elnn 4583 . . . . . . 7  |-  ( ( k  e.  suc  j  /\  suc  j  e.  om )  ->  k  e.  om )
3228, 30, 31syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  j  e.  om )  /\  k  e.  suc  j )  -> 
k  e.  om )
3320, 27, 32rspcdva 2835 . . . . 5  |-  ( ( ( ph  /\  j  e.  om )  /\  k  e.  suc  j )  -> 
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
3433ralrimiva 2539 . . . 4  |-  ( (
ph  /\  j  e.  om )  ->  A. k  e.  suc  j ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
3534iftrued 3527 . . 3  |-  ( (
ph  /\  j  e.  om )  ->  if ( A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  1o )
36 omex 4570 . . . . . . 7  |-  om  e.  _V
3736mptex 5711 . . . . . 6  |-  ( n  e.  om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  _V
3837a1i 9 . . . . 5  |-  ( (
ph  /\  j  e.  om )  ->  ( n  e.  om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  _V )
39 fveq1 5485 . . . . . . . . . 10  |-  ( q  =  Q  ->  (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) ) )
4039eqeq1d 2174 . . . . . . . . 9  |-  ( q  =  Q  ->  (
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
4140ralbidv 2466 . . . . . . . 8  |-  ( q  =  Q  ->  ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
4241ifbid 3541 . . . . . . 7  |-  ( q  =  Q  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
4342mpteq2dv 4073 . . . . . 6  |-  ( q  =  Q  ->  (
n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
4443, 1fvmptg 5562 . . . . 5  |-  ( ( Q  e.  ( 2o 
^m )  /\  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  _V )  -> 
( E `  Q
)  =  ( n  e.  om  |->  if ( A. k  e.  suc  n ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
4521, 38, 44syl2anc 409 . . . 4  |-  ( (
ph  /\  j  e.  om )  ->  ( E `  Q )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
46 suceq 4380 . . . . . . 7  |-  ( n  =  j  ->  suc  n  =  suc  j )
4746adantl 275 . . . . . 6  |-  ( ( ( ph  /\  j  e.  om )  /\  n  =  j )  ->  suc  n  =  suc  j
)
4847raleqdv 2667 . . . . 5  |-  ( ( ( ph  /\  j  e.  om )  /\  n  =  j )  -> 
( A. k  e. 
suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  j ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
4948ifbid 3541 . . . 4  |-  ( ( ( ph  /\  j  e.  om )  /\  n  =  j )  ->  if ( A. k  e. 
suc  n ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e. 
suc  j ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
5035, 9eqeltrdi 2257 . . . 4  |-  ( (
ph  /\  j  e.  om )  ->  if ( A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  om )
5145, 49, 24, 50fvmptd 5567 . . 3  |-  ( (
ph  /\  j  e.  om )  ->  ( ( E `  Q ) `  j )  =  if ( A. k  e. 
suc  j ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
52 eqidd 2166 . . . . . 6  |-  ( i  =  j  ->  1o  =  1o )
53 eqid 2165 . . . . . 6  |-  ( i  e.  om  |->  1o )  =  ( i  e. 
om  |->  1o )
5452, 53fvmptg 5562 . . . . 5  |-  ( ( j  e.  om  /\  1o  e.  om )  -> 
( ( i  e. 
om  |->  1o ) `  j )  =  1o )
559, 54mpan2 422 . . . 4  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  j )  =  1o )
5655adantl 275 . . 3  |-  ( (
ph  /\  j  e.  om )  ->  ( (
i  e.  om  |->  1o ) `  j )  =  1o )
5735, 51, 563eqtr4d 2208 . 2  |-  ( (
ph  /\  j  e.  om )  ->  ( ( E `  Q ) `  j )  =  ( ( i  e.  om  |->  1o ) `  j ) )
588, 15, 57eqfnfvd 5586 1  |-  ( ph  ->  ( E `  Q
)  =  ( i  e.  om  |->  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726   (/)c0 3409   ifcif 3520   {csn 3576    |-> cmpt 4043   suc csuc 4343   omcom 4567    X. cxp 4602    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842   1oc1o 6377   2oc2o 6378    ^m cmap 6614  ℕxnninf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-nninf 7085
This theorem is referenced by:  nninfsel  13897
  Copyright terms: Public domain W3C validator