| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsellemeqinf | Unicode version | ||
| Description: Lemma for nninfsel 16156. (Contributed by Jim Kingdon, 9-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e |
|
| nninfsel.q |
|
| nninfsel.1 |
|
| Ref | Expression |
|---|---|
| nninfsellemeqinf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfsel.e |
. . . . . . 7
| |
| 2 | 1 | nninfself 16152 |
. . . . . 6
|
| 3 | 2 | a1i 9 |
. . . . 5
|
| 4 | nninfsel.q |
. . . . 5
| |
| 5 | 3, 4 | ffvelcdmd 5739 |
. . . 4
|
| 6 | nninff 7250 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 7 | ffnd 5446 |
. 2
|
| 9 | 1onn 6629 |
. . . . 5
| |
| 10 | fnconstg 5495 |
. . . . 5
| |
| 11 | 9, 10 | ax-mp 5 |
. . . 4
|
| 12 | fconstmpt 4740 |
. . . . 5
| |
| 13 | 12 | fneq1i 5387 |
. . . 4
|
| 14 | 11, 13 | mpbi 145 |
. . 3
|
| 15 | 14 | a1i 9 |
. 2
|
| 16 | elequ2 2183 |
. . . . . . . . . 10
| |
| 17 | 16 | ifbid 3601 |
. . . . . . . . 9
|
| 18 | 17 | mpteq2dv 4151 |
. . . . . . . 8
|
| 19 | 18 | fveq2d 5603 |
. . . . . . 7
|
| 20 | 19 | eqeq1d 2216 |
. . . . . 6
|
| 21 | 4 | adantr 276 |
. . . . . . . . 9
|
| 22 | nninfsel.1 |
. . . . . . . . . 10
| |
| 23 | 22 | adantr 276 |
. . . . . . . . 9
|
| 24 | simpr 110 |
. . . . . . . . 9
| |
| 25 | 1, 21, 23, 24 | nninfsellemqall 16154 |
. . . . . . . 8
|
| 26 | 25 | ralrimiva 2581 |
. . . . . . 7
|
| 27 | 26 | ad2antrr 488 |
. . . . . 6
|
| 28 | simpr 110 |
. . . . . . 7
| |
| 29 | peano2 4661 |
. . . . . . . 8
| |
| 30 | 29 | ad2antlr 489 |
. . . . . . 7
|
| 31 | elnn 4672 |
. . . . . . 7
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . 6
|
| 33 | 20, 27, 32 | rspcdva 2889 |
. . . . 5
|
| 34 | 33 | ralrimiva 2581 |
. . . 4
|
| 35 | 34 | iftrued 3586 |
. . 3
|
| 36 | omex 4659 |
. . . . . . 7
| |
| 37 | 36 | mptex 5833 |
. . . . . 6
|
| 38 | 37 | a1i 9 |
. . . . 5
|
| 39 | fveq1 5598 |
. . . . . . . . . 10
| |
| 40 | 39 | eqeq1d 2216 |
. . . . . . . . 9
|
| 41 | 40 | ralbidv 2508 |
. . . . . . . 8
|
| 42 | 41 | ifbid 3601 |
. . . . . . 7
|
| 43 | 42 | mpteq2dv 4151 |
. . . . . 6
|
| 44 | 43, 1 | fvmptg 5678 |
. . . . 5
|
| 45 | 21, 38, 44 | syl2anc 411 |
. . . 4
|
| 46 | suceq 4467 |
. . . . . . 7
| |
| 47 | 46 | adantl 277 |
. . . . . 6
|
| 48 | 47 | raleqdv 2711 |
. . . . 5
|
| 49 | 48 | ifbid 3601 |
. . . 4
|
| 50 | 35, 9 | eqeltrdi 2298 |
. . . 4
|
| 51 | 45, 49, 24, 50 | fvmptd 5683 |
. . 3
|
| 52 | eqidd 2208 |
. . . . . 6
| |
| 53 | eqid 2207 |
. . . . . 6
| |
| 54 | 52, 53 | fvmptg 5678 |
. . . . 5
|
| 55 | 9, 54 | mpan2 425 |
. . . 4
|
| 56 | 55 | adantl 277 |
. . 3
|
| 57 | 35, 51, 56 | 3eqtr4d 2250 |
. 2
|
| 58 | 8, 15, 57 | eqfnfvd 5703 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1o 6525 df-2o 6526 df-map 6760 df-nninf 7248 |
| This theorem is referenced by: nninfsel 16156 |
| Copyright terms: Public domain | W3C validator |