| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsellemeqinf | Unicode version | ||
| Description: Lemma for nninfsel 15661. (Contributed by Jim Kingdon, 9-Aug-2022.) | 
| Ref | Expression | 
|---|---|
| nninfsel.e | 
 | 
| nninfsel.q | 
 | 
| nninfsel.1 | 
 | 
| Ref | Expression | 
|---|---|
| nninfsellemeqinf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nninfsel.e | 
. . . . . . 7
 | |
| 2 | 1 | nninfself 15657 | 
. . . . . 6
 | 
| 3 | 2 | a1i 9 | 
. . . . 5
 | 
| 4 | nninfsel.q | 
. . . . 5
 | |
| 5 | 3, 4 | ffvelcdmd 5698 | 
. . . 4
 | 
| 6 | nninff 7188 | 
. . . 4
 | |
| 7 | 5, 6 | syl 14 | 
. . 3
 | 
| 8 | 7 | ffnd 5408 | 
. 2
 | 
| 9 | 1onn 6578 | 
. . . . 5
 | |
| 10 | fnconstg 5455 | 
. . . . 5
 | |
| 11 | 9, 10 | ax-mp 5 | 
. . . 4
 | 
| 12 | fconstmpt 4710 | 
. . . . 5
 | |
| 13 | 12 | fneq1i 5352 | 
. . . 4
 | 
| 14 | 11, 13 | mpbi 145 | 
. . 3
 | 
| 15 | 14 | a1i 9 | 
. 2
 | 
| 16 | elequ2 2172 | 
. . . . . . . . . 10
 | |
| 17 | 16 | ifbid 3582 | 
. . . . . . . . 9
 | 
| 18 | 17 | mpteq2dv 4124 | 
. . . . . . . 8
 | 
| 19 | 18 | fveq2d 5562 | 
. . . . . . 7
 | 
| 20 | 19 | eqeq1d 2205 | 
. . . . . 6
 | 
| 21 | 4 | adantr 276 | 
. . . . . . . . 9
 | 
| 22 | nninfsel.1 | 
. . . . . . . . . 10
 | |
| 23 | 22 | adantr 276 | 
. . . . . . . . 9
 | 
| 24 | simpr 110 | 
. . . . . . . . 9
 | |
| 25 | 1, 21, 23, 24 | nninfsellemqall 15659 | 
. . . . . . . 8
 | 
| 26 | 25 | ralrimiva 2570 | 
. . . . . . 7
 | 
| 27 | 26 | ad2antrr 488 | 
. . . . . 6
 | 
| 28 | simpr 110 | 
. . . . . . 7
 | |
| 29 | peano2 4631 | 
. . . . . . . 8
 | |
| 30 | 29 | ad2antlr 489 | 
. . . . . . 7
 | 
| 31 | elnn 4642 | 
. . . . . . 7
 | |
| 32 | 28, 30, 31 | syl2anc 411 | 
. . . . . 6
 | 
| 33 | 20, 27, 32 | rspcdva 2873 | 
. . . . 5
 | 
| 34 | 33 | ralrimiva 2570 | 
. . . 4
 | 
| 35 | 34 | iftrued 3568 | 
. . 3
 | 
| 36 | omex 4629 | 
. . . . . . 7
 | |
| 37 | 36 | mptex 5788 | 
. . . . . 6
 | 
| 38 | 37 | a1i 9 | 
. . . . 5
 | 
| 39 | fveq1 5557 | 
. . . . . . . . . 10
 | |
| 40 | 39 | eqeq1d 2205 | 
. . . . . . . . 9
 | 
| 41 | 40 | ralbidv 2497 | 
. . . . . . . 8
 | 
| 42 | 41 | ifbid 3582 | 
. . . . . . 7
 | 
| 43 | 42 | mpteq2dv 4124 | 
. . . . . 6
 | 
| 44 | 43, 1 | fvmptg 5637 | 
. . . . 5
 | 
| 45 | 21, 38, 44 | syl2anc 411 | 
. . . 4
 | 
| 46 | suceq 4437 | 
. . . . . . 7
 | |
| 47 | 46 | adantl 277 | 
. . . . . 6
 | 
| 48 | 47 | raleqdv 2699 | 
. . . . 5
 | 
| 49 | 48 | ifbid 3582 | 
. . . 4
 | 
| 50 | 35, 9 | eqeltrdi 2287 | 
. . . 4
 | 
| 51 | 45, 49, 24, 50 | fvmptd 5642 | 
. . 3
 | 
| 52 | eqidd 2197 | 
. . . . . 6
 | |
| 53 | eqid 2196 | 
. . . . . 6
 | |
| 54 | 52, 53 | fvmptg 5637 | 
. . . . 5
 | 
| 55 | 9, 54 | mpan2 425 | 
. . . 4
 | 
| 56 | 55 | adantl 277 | 
. . 3
 | 
| 57 | 35, 51, 56 | 3eqtr4d 2239 | 
. 2
 | 
| 58 | 8, 15, 57 | eqfnfvd 5662 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1o 6474 df-2o 6475 df-map 6709 df-nninf 7186 | 
| This theorem is referenced by: nninfsel 15661 | 
| Copyright terms: Public domain | W3C validator |