| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsellemeqinf | Unicode version | ||
| Description: Lemma for nninfsel 16342. (Contributed by Jim Kingdon, 9-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e |
|
| nninfsel.q |
|
| nninfsel.1 |
|
| Ref | Expression |
|---|---|
| nninfsellemeqinf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfsel.e |
. . . . . . 7
| |
| 2 | 1 | nninfself 16338 |
. . . . . 6
|
| 3 | 2 | a1i 9 |
. . . . 5
|
| 4 | nninfsel.q |
. . . . 5
| |
| 5 | 3, 4 | ffvelcdmd 5770 |
. . . 4
|
| 6 | nninff 7285 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 7 | ffnd 5473 |
. 2
|
| 9 | 1onn 6664 |
. . . . 5
| |
| 10 | fnconstg 5522 |
. . . . 5
| |
| 11 | 9, 10 | ax-mp 5 |
. . . 4
|
| 12 | fconstmpt 4765 |
. . . . 5
| |
| 13 | 12 | fneq1i 5414 |
. . . 4
|
| 14 | 11, 13 | mpbi 145 |
. . 3
|
| 15 | 14 | a1i 9 |
. 2
|
| 16 | elequ2 2205 |
. . . . . . . . . 10
| |
| 17 | 16 | ifbid 3624 |
. . . . . . . . 9
|
| 18 | 17 | mpteq2dv 4174 |
. . . . . . . 8
|
| 19 | 18 | fveq2d 5630 |
. . . . . . 7
|
| 20 | 19 | eqeq1d 2238 |
. . . . . 6
|
| 21 | 4 | adantr 276 |
. . . . . . . . 9
|
| 22 | nninfsel.1 |
. . . . . . . . . 10
| |
| 23 | 22 | adantr 276 |
. . . . . . . . 9
|
| 24 | simpr 110 |
. . . . . . . . 9
| |
| 25 | 1, 21, 23, 24 | nninfsellemqall 16340 |
. . . . . . . 8
|
| 26 | 25 | ralrimiva 2603 |
. . . . . . 7
|
| 27 | 26 | ad2antrr 488 |
. . . . . 6
|
| 28 | simpr 110 |
. . . . . . 7
| |
| 29 | peano2 4686 |
. . . . . . . 8
| |
| 30 | 29 | ad2antlr 489 |
. . . . . . 7
|
| 31 | elnn 4697 |
. . . . . . 7
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . 6
|
| 33 | 20, 27, 32 | rspcdva 2912 |
. . . . 5
|
| 34 | 33 | ralrimiva 2603 |
. . . 4
|
| 35 | 34 | iftrued 3609 |
. . 3
|
| 36 | omex 4684 |
. . . . . . 7
| |
| 37 | 36 | mptex 5864 |
. . . . . 6
|
| 38 | 37 | a1i 9 |
. . . . 5
|
| 39 | fveq1 5625 |
. . . . . . . . . 10
| |
| 40 | 39 | eqeq1d 2238 |
. . . . . . . . 9
|
| 41 | 40 | ralbidv 2530 |
. . . . . . . 8
|
| 42 | 41 | ifbid 3624 |
. . . . . . 7
|
| 43 | 42 | mpteq2dv 4174 |
. . . . . 6
|
| 44 | 43, 1 | fvmptg 5709 |
. . . . 5
|
| 45 | 21, 38, 44 | syl2anc 411 |
. . . 4
|
| 46 | suceq 4492 |
. . . . . . 7
| |
| 47 | 46 | adantl 277 |
. . . . . 6
|
| 48 | 47 | raleqdv 2734 |
. . . . 5
|
| 49 | 48 | ifbid 3624 |
. . . 4
|
| 50 | 35, 9 | eqeltrdi 2320 |
. . . 4
|
| 51 | 45, 49, 24, 50 | fvmptd 5714 |
. . 3
|
| 52 | eqidd 2230 |
. . . . . 6
| |
| 53 | eqid 2229 |
. . . . . 6
| |
| 54 | 52, 53 | fvmptg 5709 |
. . . . 5
|
| 55 | 9, 54 | mpan2 425 |
. . . 4
|
| 56 | 55 | adantl 277 |
. . 3
|
| 57 | 35, 51, 56 | 3eqtr4d 2272 |
. 2
|
| 58 | 8, 15, 57 | eqfnfvd 5734 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1o 6560 df-2o 6561 df-map 6795 df-nninf 7283 |
| This theorem is referenced by: nninfsel 16342 |
| Copyright terms: Public domain | W3C validator |