ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand Unicode version

Theorem frec2uzrand 10209
Description: Range of  G (see frec2uz0d 10203). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzrand  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzrand
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2  |-  ( ph  ->  C  e.  ZZ )
2 zex 9087 . . . . . . . . . . 11  |-  ZZ  e.  _V
32mptex 5654 . . . . . . . . . 10  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
4 vex 2692 . . . . . . . . . 10  |-  z  e. 
_V
53, 4fvex 5449 . . . . . . . . 9  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
65ax-gen 1426 . . . . . . . 8  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
7 frecfnom 6306 . . . . . . . 8  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
86, 7mpan 421 . . . . . . 7  |-  ( C  e.  ZZ  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5225 . . . . . . 7  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 133 . . . . . 6  |-  ( C  e.  ZZ  ->  G  Fn  om )
12 fvelrnb 5477 . . . . . 6  |-  ( G  Fn  om  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
1311, 12syl 14 . . . . 5  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
14 simpl 108 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  C  e.  ZZ )
15 simpr 109 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  z  e.  om )
1614, 9, 15frec2uzuzd 10206 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  z
)  e.  ( ZZ>= `  C ) )
17 eleq1 2203 . . . . . . 7  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  e.  ( ZZ>= `  C )  <->  y  e.  ( ZZ>= `  C )
) )
1816, 17syl5ibcom 154 . . . . . 6  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  y  e.  (
ZZ>= `  C ) ) )
1918rexlimdva 2552 . . . . 5  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  y  e.  ( ZZ>= `  C )
) )
2013, 19sylbid 149 . . . 4  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  y  e.  ( ZZ>= `  C ) ) )
21 eleq1 2203 . . . . 5  |-  ( w  =  C  ->  (
w  e.  ran  G  <->  C  e.  ran  G ) )
22 eleq1 2203 . . . . 5  |-  ( w  =  y  ->  (
w  e.  ran  G  <->  y  e.  ran  G ) )
23 eleq1 2203 . . . . 5  |-  ( w  =  ( y  +  1 )  ->  (
w  e.  ran  G  <->  ( y  +  1 )  e.  ran  G ) )
24 id 19 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  ZZ )
2524, 9frec2uz0d 10203 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  =  C )
26 peano1 4516 . . . . . . 7  |-  (/)  e.  om
27 fnfvelrn 5560 . . . . . . 7  |-  ( ( G  Fn  om  /\  (/) 
e.  om )  ->  ( G `  (/) )  e. 
ran  G )
2811, 26, 27sylancl 410 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  e. 
ran  G )
2925, 28eqeltrrd 2218 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  ran  G )
30 eluzel2 9355 . . . . . 6  |-  ( y  e.  ( ZZ>= `  C
)  ->  C  e.  ZZ )
3114, 9, 15frec2uzsucd 10205 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  =  ( ( G `  z
)  +  1 ) )
32 oveq1 5789 . . . . . . . . . . 11  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  +  1 )  =  ( y  +  1 ) )
3331, 32sylan9eq 2193 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  =  ( y  +  1 ) )
34 peano2 4517 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  suc  z  e.  om )
35 fnfvelrn 5560 . . . . . . . . . . . 12  |-  ( ( G  Fn  om  /\  suc  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3611, 34, 35syl2an 287 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3736adantr 274 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  e.  ran  G )
3833, 37eqeltrrd 2218 . . . . . . . . 9  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( y  +  1 )  e.  ran  G )
3938ex 114 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  ( y  +  1 )  e.  ran  G ) )
4039rexlimdva 2552 . . . . . . 7  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  (
y  +  1 )  e.  ran  G ) )
4113, 40sylbid 149 . . . . . 6  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  ( y  +  1 )  e.  ran  G
) )
4230, 41syl 14 . . . . 5  |-  ( y  e.  ( ZZ>= `  C
)  ->  ( y  e.  ran  G  ->  (
y  +  1 )  e.  ran  G ) )
4321, 22, 23, 22, 29, 42uzind4 9410 . . . 4  |-  ( y  e.  ( ZZ>= `  C
)  ->  y  e.  ran  G )
4420, 43impbid1 141 . . 3  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  y  e.  ( ZZ>= `  C
) ) )
4544eqrdv 2138 . 2  |-  ( C  e.  ZZ  ->  ran  G  =  ( ZZ>= `  C
) )
461, 45syl 14 1  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1330    = wceq 1332    e. wcel 1481   E.wrex 2418   _Vcvv 2689   (/)c0 3368    |-> cmpt 3997   suc csuc 4295   omcom 4512   ran crn 4548    Fn wfn 5126   ` cfv 5131  (class class class)co 5782  freccfrec 6295   1c1 7645    + caddc 7647   ZZcz 9078   ZZ>=cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  frec2uzf1od  10210
  Copyright terms: Public domain W3C validator