ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand Unicode version

Theorem frec2uzrand 10587
Description: Range of  G (see frec2uz0d 10581). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzrand  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzrand
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2  |-  ( ph  ->  C  e.  ZZ )
2 zex 9416 . . . . . . . . . . 11  |-  ZZ  e.  _V
32mptex 5833 . . . . . . . . . 10  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
4 vex 2779 . . . . . . . . . 10  |-  z  e. 
_V
53, 4fvex 5619 . . . . . . . . 9  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
65ax-gen 1473 . . . . . . . 8  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
7 frecfnom 6510 . . . . . . . 8  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
86, 7mpan 424 . . . . . . 7  |-  ( C  e.  ZZ  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5387 . . . . . . 7  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 134 . . . . . 6  |-  ( C  e.  ZZ  ->  G  Fn  om )
12 fvelrnb 5649 . . . . . 6  |-  ( G  Fn  om  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
1311, 12syl 14 . . . . 5  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
14 simpl 109 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  C  e.  ZZ )
15 simpr 110 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  z  e.  om )
1614, 9, 15frec2uzuzd 10584 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  z
)  e.  ( ZZ>= `  C ) )
17 eleq1 2270 . . . . . . 7  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  e.  ( ZZ>= `  C )  <->  y  e.  ( ZZ>= `  C )
) )
1816, 17syl5ibcom 155 . . . . . 6  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  y  e.  (
ZZ>= `  C ) ) )
1918rexlimdva 2625 . . . . 5  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  y  e.  ( ZZ>= `  C )
) )
2013, 19sylbid 150 . . . 4  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  y  e.  ( ZZ>= `  C ) ) )
21 eleq1 2270 . . . . 5  |-  ( w  =  C  ->  (
w  e.  ran  G  <->  C  e.  ran  G ) )
22 eleq1 2270 . . . . 5  |-  ( w  =  y  ->  (
w  e.  ran  G  <->  y  e.  ran  G ) )
23 eleq1 2270 . . . . 5  |-  ( w  =  ( y  +  1 )  ->  (
w  e.  ran  G  <->  ( y  +  1 )  e.  ran  G ) )
24 id 19 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  ZZ )
2524, 9frec2uz0d 10581 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  =  C )
26 peano1 4660 . . . . . . 7  |-  (/)  e.  om
27 fnfvelrn 5735 . . . . . . 7  |-  ( ( G  Fn  om  /\  (/) 
e.  om )  ->  ( G `  (/) )  e. 
ran  G )
2811, 26, 27sylancl 413 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  e. 
ran  G )
2925, 28eqeltrrd 2285 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  ran  G )
30 eluzel2 9688 . . . . . 6  |-  ( y  e.  ( ZZ>= `  C
)  ->  C  e.  ZZ )
3114, 9, 15frec2uzsucd 10583 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  =  ( ( G `  z
)  +  1 ) )
32 oveq1 5974 . . . . . . . . . . 11  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  +  1 )  =  ( y  +  1 ) )
3331, 32sylan9eq 2260 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  =  ( y  +  1 ) )
34 peano2 4661 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  suc  z  e.  om )
35 fnfvelrn 5735 . . . . . . . . . . . 12  |-  ( ( G  Fn  om  /\  suc  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3611, 34, 35syl2an 289 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3736adantr 276 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  e.  ran  G )
3833, 37eqeltrrd 2285 . . . . . . . . 9  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( y  +  1 )  e.  ran  G )
3938ex 115 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  ( y  +  1 )  e.  ran  G ) )
4039rexlimdva 2625 . . . . . . 7  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  (
y  +  1 )  e.  ran  G ) )
4113, 40sylbid 150 . . . . . 6  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  ( y  +  1 )  e.  ran  G
) )
4230, 41syl 14 . . . . 5  |-  ( y  e.  ( ZZ>= `  C
)  ->  ( y  e.  ran  G  ->  (
y  +  1 )  e.  ran  G ) )
4321, 22, 23, 22, 29, 42uzind4 9744 . . . 4  |-  ( y  e.  ( ZZ>= `  C
)  ->  y  e.  ran  G )
4420, 43impbid1 142 . . 3  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  y  e.  ( ZZ>= `  C
) ) )
4544eqrdv 2205 . 2  |-  ( C  e.  ZZ  ->  ran  G  =  ( ZZ>= `  C
) )
461, 45syl 14 1  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2178   E.wrex 2487   _Vcvv 2776   (/)c0 3468    |-> cmpt 4121   suc csuc 4430   omcom 4656   ran crn 4694    Fn wfn 5285   ` cfv 5290  (class class class)co 5967  freccfrec 6499   1c1 7961    + caddc 7963   ZZcz 9407   ZZ>=cuz 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684
This theorem is referenced by:  frec2uzf1od  10588
  Copyright terms: Public domain W3C validator