ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand Unicode version

Theorem frec2uzrand 10334
Description: Range of  G (see frec2uz0d 10328). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzrand  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzrand
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2  |-  ( ph  ->  C  e.  ZZ )
2 zex 9194 . . . . . . . . . . 11  |-  ZZ  e.  _V
32mptex 5708 . . . . . . . . . 10  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
4 vex 2727 . . . . . . . . . 10  |-  z  e. 
_V
53, 4fvex 5503 . . . . . . . . 9  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
65ax-gen 1436 . . . . . . . 8  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
7 frecfnom 6363 . . . . . . . 8  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
86, 7mpan 421 . . . . . . 7  |-  ( C  e.  ZZ  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5279 . . . . . . 7  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 133 . . . . . 6  |-  ( C  e.  ZZ  ->  G  Fn  om )
12 fvelrnb 5531 . . . . . 6  |-  ( G  Fn  om  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
1311, 12syl 14 . . . . 5  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
14 simpl 108 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  C  e.  ZZ )
15 simpr 109 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  z  e.  om )
1614, 9, 15frec2uzuzd 10331 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  z
)  e.  ( ZZ>= `  C ) )
17 eleq1 2227 . . . . . . 7  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  e.  ( ZZ>= `  C )  <->  y  e.  ( ZZ>= `  C )
) )
1816, 17syl5ibcom 154 . . . . . 6  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  y  e.  (
ZZ>= `  C ) ) )
1918rexlimdva 2581 . . . . 5  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  y  e.  ( ZZ>= `  C )
) )
2013, 19sylbid 149 . . . 4  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  y  e.  ( ZZ>= `  C ) ) )
21 eleq1 2227 . . . . 5  |-  ( w  =  C  ->  (
w  e.  ran  G  <->  C  e.  ran  G ) )
22 eleq1 2227 . . . . 5  |-  ( w  =  y  ->  (
w  e.  ran  G  <->  y  e.  ran  G ) )
23 eleq1 2227 . . . . 5  |-  ( w  =  ( y  +  1 )  ->  (
w  e.  ran  G  <->  ( y  +  1 )  e.  ran  G ) )
24 id 19 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  ZZ )
2524, 9frec2uz0d 10328 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  =  C )
26 peano1 4568 . . . . . . 7  |-  (/)  e.  om
27 fnfvelrn 5614 . . . . . . 7  |-  ( ( G  Fn  om  /\  (/) 
e.  om )  ->  ( G `  (/) )  e. 
ran  G )
2811, 26, 27sylancl 410 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  e. 
ran  G )
2925, 28eqeltrrd 2242 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  ran  G )
30 eluzel2 9465 . . . . . 6  |-  ( y  e.  ( ZZ>= `  C
)  ->  C  e.  ZZ )
3114, 9, 15frec2uzsucd 10330 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  =  ( ( G `  z
)  +  1 ) )
32 oveq1 5846 . . . . . . . . . . 11  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  +  1 )  =  ( y  +  1 ) )
3331, 32sylan9eq 2217 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  =  ( y  +  1 ) )
34 peano2 4569 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  suc  z  e.  om )
35 fnfvelrn 5614 . . . . . . . . . . . 12  |-  ( ( G  Fn  om  /\  suc  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3611, 34, 35syl2an 287 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3736adantr 274 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  e.  ran  G )
3833, 37eqeltrrd 2242 . . . . . . . . 9  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( y  +  1 )  e.  ran  G )
3938ex 114 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  ( y  +  1 )  e.  ran  G ) )
4039rexlimdva 2581 . . . . . . 7  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  (
y  +  1 )  e.  ran  G ) )
4113, 40sylbid 149 . . . . . 6  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  ( y  +  1 )  e.  ran  G
) )
4230, 41syl 14 . . . . 5  |-  ( y  e.  ( ZZ>= `  C
)  ->  ( y  e.  ran  G  ->  (
y  +  1 )  e.  ran  G ) )
4321, 22, 23, 22, 29, 42uzind4 9520 . . . 4  |-  ( y  e.  ( ZZ>= `  C
)  ->  y  e.  ran  G )
4420, 43impbid1 141 . . 3  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  y  e.  ( ZZ>= `  C
) ) )
4544eqrdv 2162 . 2  |-  ( C  e.  ZZ  ->  ran  G  =  ( ZZ>= `  C
) )
461, 45syl 14 1  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1340    = wceq 1342    e. wcel 2135   E.wrex 2443   _Vcvv 2724   (/)c0 3407    |-> cmpt 4040   suc csuc 4340   omcom 4564   ran crn 4602    Fn wfn 5180   ` cfv 5185  (class class class)co 5839  freccfrec 6352   1c1 7748    + caddc 7750   ZZcz 9185   ZZ>=cuz 9460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-iinf 4562  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-addcom 7847  ax-addass 7849  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-0id 7855  ax-rnegex 7856  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-ltadd 7863
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-id 4268  df-iord 4341  df-on 4343  df-ilim 4344  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-recs 6267  df-frec 6353  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-inn 8852  df-n0 9109  df-z 9186  df-uz 9461
This theorem is referenced by:  frec2uzf1od  10335
  Copyright terms: Public domain W3C validator