ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand Unicode version

Theorem frec2uzrand 10497
Description: Range of  G (see frec2uz0d 10491). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzrand  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzrand
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2  |-  ( ph  ->  C  e.  ZZ )
2 zex 9335 . . . . . . . . . . 11  |-  ZZ  e.  _V
32mptex 5788 . . . . . . . . . 10  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
4 vex 2766 . . . . . . . . . 10  |-  z  e. 
_V
53, 4fvex 5578 . . . . . . . . 9  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
65ax-gen 1463 . . . . . . . 8  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
7 frecfnom 6459 . . . . . . . 8  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
86, 7mpan 424 . . . . . . 7  |-  ( C  e.  ZZ  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5352 . . . . . . 7  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 134 . . . . . 6  |-  ( C  e.  ZZ  ->  G  Fn  om )
12 fvelrnb 5608 . . . . . 6  |-  ( G  Fn  om  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
1311, 12syl 14 . . . . 5  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
14 simpl 109 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  C  e.  ZZ )
15 simpr 110 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  z  e.  om )
1614, 9, 15frec2uzuzd 10494 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  z
)  e.  ( ZZ>= `  C ) )
17 eleq1 2259 . . . . . . 7  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  e.  ( ZZ>= `  C )  <->  y  e.  ( ZZ>= `  C )
) )
1816, 17syl5ibcom 155 . . . . . 6  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  y  e.  (
ZZ>= `  C ) ) )
1918rexlimdva 2614 . . . . 5  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  y  e.  ( ZZ>= `  C )
) )
2013, 19sylbid 150 . . . 4  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  y  e.  ( ZZ>= `  C ) ) )
21 eleq1 2259 . . . . 5  |-  ( w  =  C  ->  (
w  e.  ran  G  <->  C  e.  ran  G ) )
22 eleq1 2259 . . . . 5  |-  ( w  =  y  ->  (
w  e.  ran  G  <->  y  e.  ran  G ) )
23 eleq1 2259 . . . . 5  |-  ( w  =  ( y  +  1 )  ->  (
w  e.  ran  G  <->  ( y  +  1 )  e.  ran  G ) )
24 id 19 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  ZZ )
2524, 9frec2uz0d 10491 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  =  C )
26 peano1 4630 . . . . . . 7  |-  (/)  e.  om
27 fnfvelrn 5694 . . . . . . 7  |-  ( ( G  Fn  om  /\  (/) 
e.  om )  ->  ( G `  (/) )  e. 
ran  G )
2811, 26, 27sylancl 413 . . . . . 6  |-  ( C  e.  ZZ  ->  ( G `  (/) )  e. 
ran  G )
2925, 28eqeltrrd 2274 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  ran  G )
30 eluzel2 9606 . . . . . 6  |-  ( y  e.  ( ZZ>= `  C
)  ->  C  e.  ZZ )
3114, 9, 15frec2uzsucd 10493 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  =  ( ( G `  z
)  +  1 ) )
32 oveq1 5929 . . . . . . . . . . 11  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  +  1 )  =  ( y  +  1 ) )
3331, 32sylan9eq 2249 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  =  ( y  +  1 ) )
34 peano2 4631 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  suc  z  e.  om )
35 fnfvelrn 5694 . . . . . . . . . . . 12  |-  ( ( G  Fn  om  /\  suc  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3611, 34, 35syl2an 289 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
3736adantr 276 . . . . . . . . . 10  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( G `  suc  z )  e.  ran  G )
3833, 37eqeltrrd 2274 . . . . . . . . 9  |-  ( ( ( C  e.  ZZ  /\  z  e.  om )  /\  ( G `  z
)  =  y )  ->  ( y  +  1 )  e.  ran  G )
3938ex 115 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  z  e.  om )  ->  ( ( G `  z )  =  y  ->  ( y  +  1 )  e.  ran  G ) )
4039rexlimdva 2614 . . . . . . 7  |-  ( C  e.  ZZ  ->  ( E. z  e.  om  ( G `  z )  =  y  ->  (
y  +  1 )  e.  ran  G ) )
4113, 40sylbid 150 . . . . . 6  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  ->  ( y  +  1 )  e.  ran  G
) )
4230, 41syl 14 . . . . 5  |-  ( y  e.  ( ZZ>= `  C
)  ->  ( y  e.  ran  G  ->  (
y  +  1 )  e.  ran  G ) )
4321, 22, 23, 22, 29, 42uzind4 9662 . . . 4  |-  ( y  e.  ( ZZ>= `  C
)  ->  y  e.  ran  G )
4420, 43impbid1 142 . . 3  |-  ( C  e.  ZZ  ->  (
y  e.  ran  G  <->  y  e.  ( ZZ>= `  C
) ) )
4544eqrdv 2194 . 2  |-  ( C  e.  ZZ  ->  ran  G  =  ( ZZ>= `  C
) )
461, 45syl 14 1  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2167   E.wrex 2476   _Vcvv 2763   (/)c0 3450    |-> cmpt 4094   suc csuc 4400   omcom 4626   ran crn 4664    Fn wfn 5253   ` cfv 5258  (class class class)co 5922  freccfrec 6448   1c1 7880    + caddc 7882   ZZcz 9326   ZZ>=cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602
This theorem is referenced by:  frec2uzf1od  10498
  Copyright terms: Public domain W3C validator