![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fniinfv | GIF version |
Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
fniinfv | ⊢ (𝐹 Fn 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvex 5572 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
2 | 1 | funfni 5355 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
3 | 2 | ralrimiva 2567 | . . 3 ⊢ (𝐹 Fn 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V) |
4 | dfiin2g 3946 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝐹 Fn 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
6 | fnrnfv 5604 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
7 | 6 | inteqd 3876 | . 2 ⊢ (𝐹 Fn 𝐴 → ∩ ran 𝐹 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
8 | 5, 7 | eqtr4d 2229 | 1 ⊢ (𝐹 Fn 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∃wrex 2473 Vcvv 2760 ∩ cint 3871 ∩ ciin 3914 ran crn 4661 Fn wfn 5250 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iin 3916 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |