ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniinfv GIF version

Theorem fniinfv 5375
Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
fniinfv (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem fniinfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funfvex 5335 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
21funfni 5127 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
32ralrimiva 2447 . . 3 (𝐹 Fn 𝐴 → ∀𝑥𝐴 (𝐹𝑥) ∈ V)
4 dfiin2g 3769 . . 3 (∀𝑥𝐴 (𝐹𝑥) ∈ V → 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
53, 4syl 14 . 2 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
6 fnrnfv 5364 . . 3 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
76inteqd 3699 . 2 (𝐹 Fn 𝐴 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
85, 7eqtr4d 2124 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  wcel 1439  {cab 2075  wral 2360  wrex 2361  Vcvv 2620   cint 3694   ciin 3737  ran crn 4452   Fn wfn 5023  cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iin 3739  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-iota 4993  df-fun 5030  df-fn 5031  df-fv 5036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator