ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvi Unicode version

Theorem fvi 5361
Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fvi  |-  ( A  e.  V  ->  (  _I  `  A )  =  A )

Proof of Theorem fvi
StepHypRef Expression
1 funi 5046 . 2  |-  Fun  _I
2 ididg 4589 . 2  |-  ( A  e.  V  ->  A  _I  A )
3 funbrfv 5343 . 2  |-  ( Fun 
_I  ->  ( A  _I  A  ->  (  _I  `  A )  =  A ) )
41, 2, 3mpsyl 64 1  |-  ( A  e.  V  ->  (  _I  `  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289    e. wcel 1438   class class class wbr 3845    _I cid 4115   Fun wfun 5009   ` cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023
This theorem is referenced by:  fvresi  5490  facnn  10131  fac0  10132  fac1  10133  facp1  10134  ibcval5  10167  bcn2  10168  climshft2  10691
  Copyright terms: Public domain W3C validator