ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvi Unicode version

Theorem fvi 5524
Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fvi  |-  ( A  e.  V  ->  (  _I  `  A )  =  A )

Proof of Theorem fvi
StepHypRef Expression
1 funi 5201 . 2  |-  Fun  _I
2 ididg 4738 . 2  |-  ( A  e.  V  ->  A  _I  A )
3 funbrfv 5506 . 2  |-  ( Fun 
_I  ->  ( A  _I  A  ->  (  _I  `  A )  =  A ) )
41, 2, 3mpsyl 65 1  |-  ( A  e.  V  ->  (  _I  `  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128   class class class wbr 3965    _I cid 4248   Fun wfun 5163   ` cfv 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177
This theorem is referenced by:  fvresi  5659  seqfeq3  10406  facnn  10596  fac0  10597  fac1  10598  facp1  10599  bcval5  10632  bcn2  10633  climshft2  11198
  Copyright terms: Public domain W3C validator