ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnco Unicode version

Theorem fnco 5275
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnco  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  ( F  o.  G
)  Fn  B )

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 5264 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
2 fnfun 5264 . . . 4  |-  ( G  Fn  B  ->  Fun  G )
3 funco 5207 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
41, 2, 3syl2an 287 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  Fun  ( F  o.  G ) )
543adant3 1002 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  Fun  ( F  o.  G ) )
6 fndm 5266 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
76sseq2d 3158 . . . . . 6  |-  ( F  Fn  A  ->  ( ran  G  C_  dom  F  <->  ran  G  C_  A ) )
87biimpar 295 . . . . 5  |-  ( ( F  Fn  A  /\  ran  G  C_  A )  ->  ran  G  C_  dom  F )
9 dmcosseq 4854 . . . . 5  |-  ( ran 
G  C_  dom  F  ->  dom  ( F  o.  G
)  =  dom  G
)
108, 9syl 14 . . . 4  |-  ( ( F  Fn  A  /\  ran  G  C_  A )  ->  dom  ( F  o.  G )  =  dom  G )
11103adant2 1001 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  dom  ( F  o.  G )  =  dom  G )
12 fndm 5266 . . . 4  |-  ( G  Fn  B  ->  dom  G  =  B )
13123ad2ant2 1004 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  dom  G  =  B )
1411, 13eqtrd 2190 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  dom  ( F  o.  G )  =  B )
15 df-fn 5170 . 2  |-  ( ( F  o.  G )  Fn  B  <->  ( Fun  ( F  o.  G
)  /\  dom  ( F  o.  G )  =  B ) )
165, 14, 15sylanbrc 414 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  ( F  o.  G
)  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1335    C_ wss 3102   dom cdm 4583   ran crn 4584    o. ccom 4587   Fun wfun 5161    Fn wfn 5162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-fun 5169  df-fn 5170
This theorem is referenced by:  fco  5332  fnfco  5341  updjudhcoinlf  7014  updjudhcoinrg  7015  upxp  12632  uptx  12634
  Copyright terms: Public domain W3C validator