ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foelcdmi Unicode version

Theorem foelcdmi 5610
Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.)
Assertion
Ref Expression
foelcdmi  |-  ( ( F : A -onto-> B  /\  Y  e.  B
)  ->  E. x  e.  A  ( F `  x )  =  Y )
Distinct variable groups:    x, A    x, B    x, F    x, Y

Proof of Theorem foelcdmi
StepHypRef Expression
1 forn 5480 . . . 4  |-  ( F : A -onto-> B  ->  ran  F  =  B )
21eleq2d 2263 . . 3  |-  ( F : A -onto-> B  -> 
( Y  e.  ran  F  <-> 
Y  e.  B ) )
3 fofn 5479 . . . 4  |-  ( F : A -onto-> B  ->  F  Fn  A )
4 fvelrnb 5605 . . . 4  |-  ( F  Fn  A  ->  ( Y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  Y ) )
53, 4syl 14 . . 3  |-  ( F : A -onto-> B  -> 
( Y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  Y ) )
62, 5bitr3d 190 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  ( F `  x )  =  Y ) )
76biimpa 296 1  |-  ( ( F : A -onto-> B  /\  Y  e.  B
)  ->  E. x  e.  A  ( F `  x )  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   ran crn 4661    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263
This theorem is referenced by:  mhmid  13188  mhmmnd  13189  ghmgrp  13191  ghmcmn  13400  imasabl  13409
  Copyright terms: Public domain W3C validator