ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovcld Unicode version

Theorem fovcld 6000
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Revised by Thierry Arnoux, 17-Feb-2017.)
Hypothesis
Ref Expression
fovcld.1  |-  ( ph  ->  F : ( R  X.  S ) --> C )
Assertion
Ref Expression
fovcld  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)

Proof of Theorem fovcld
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 998 . 2  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A  e.  R  /\  B  e.  S ) )
2 fovcld.1 . . . 4  |-  ( ph  ->  F : ( R  X.  S ) --> C )
3 ffnov 5999 . . . . 5  |-  ( F : ( R  X.  S ) --> C  <->  ( F  Fn  ( R  X.  S
)  /\  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C ) )
43simprbi 275 . . . 4  |-  ( F : ( R  X.  S ) --> C  ->  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C )
52, 4syl 14 . . 3  |-  ( ph  ->  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C )
653ad2ant1 1020 . 2  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C )
7 oveq1 5902 . . . 4  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
87eleq1d 2258 . . 3  |-  ( x  =  A  ->  (
( x F y )  e.  C  <->  ( A F y )  e.  C ) )
9 oveq2 5903 . . . 4  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
109eleq1d 2258 . . 3  |-  ( y  =  B  ->  (
( A F y )  e.  C  <->  ( A F B )  e.  C
) )
118, 10rspc2v 2869 . 2  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A. x  e.  R  A. y  e.  S  ( x F y )  e.  C  ->  ( A F B )  e.  C ) )
121, 6, 11sylc 62 1  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468    X. cxp 4642    Fn wfn 5230   -->wf 5231  (class class class)co 5895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5898
This theorem is referenced by:  fovcl  6001  imasrng  13307
  Copyright terms: Public domain W3C validator