ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovcld Unicode version

Theorem fovcld 6024
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Revised by Thierry Arnoux, 17-Feb-2017.)
Hypothesis
Ref Expression
fovcld.1  |-  ( ph  ->  F : ( R  X.  S ) --> C )
Assertion
Ref Expression
fovcld  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)

Proof of Theorem fovcld
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 998 . 2  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A  e.  R  /\  B  e.  S ) )
2 fovcld.1 . . . 4  |-  ( ph  ->  F : ( R  X.  S ) --> C )
3 ffnov 6023 . . . . 5  |-  ( F : ( R  X.  S ) --> C  <->  ( F  Fn  ( R  X.  S
)  /\  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C ) )
43simprbi 275 . . . 4  |-  ( F : ( R  X.  S ) --> C  ->  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C )
52, 4syl 14 . . 3  |-  ( ph  ->  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C )
653ad2ant1 1020 . 2  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C )
7 oveq1 5926 . . . 4  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
87eleq1d 2262 . . 3  |-  ( x  =  A  ->  (
( x F y )  e.  C  <->  ( A F y )  e.  C ) )
9 oveq2 5927 . . . 4  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
109eleq1d 2262 . . 3  |-  ( y  =  B  ->  (
( A F y )  e.  C  <->  ( A F B )  e.  C
) )
118, 10rspc2v 2878 . 2  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A. x  e.  R  A. y  e.  S  ( x F y )  e.  C  ->  ( A F B )  e.  C ) )
121, 6, 11sylc 62 1  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    X. cxp 4658    Fn wfn 5250   -->wf 5251  (class class class)co 5919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922
This theorem is referenced by:  fovcl  6025  imasrng  13455
  Copyright terms: Public domain W3C validator