ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovcld Unicode version

Theorem fovcld 6109
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Revised by Thierry Arnoux, 17-Feb-2017.)
Hypothesis
Ref Expression
fovcld.1  |-  ( ph  ->  F : ( R  X.  S ) --> C )
Assertion
Ref Expression
fovcld  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)

Proof of Theorem fovcld
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1020 . 2  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A  e.  R  /\  B  e.  S ) )
2 fovcld.1 . . . 4  |-  ( ph  ->  F : ( R  X.  S ) --> C )
3 ffnov 6108 . . . . 5  |-  ( F : ( R  X.  S ) --> C  <->  ( F  Fn  ( R  X.  S
)  /\  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C ) )
43simprbi 275 . . . 4  |-  ( F : ( R  X.  S ) --> C  ->  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C )
52, 4syl 14 . . 3  |-  ( ph  ->  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C )
653ad2ant1 1042 . 2  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  A. x  e.  R  A. y  e.  S  ( x F y )  e.  C )
7 oveq1 6008 . . . 4  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
87eleq1d 2298 . . 3  |-  ( x  =  A  ->  (
( x F y )  e.  C  <->  ( A F y )  e.  C ) )
9 oveq2 6009 . . . 4  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
109eleq1d 2298 . . 3  |-  ( y  =  B  ->  (
( A F y )  e.  C  <->  ( A F B )  e.  C
) )
118, 10rspc2v 2920 . 2  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A. x  e.  R  A. y  e.  S  ( x F y )  e.  C  ->  ( A F B )  e.  C ) )
121, 6, 11sylc 62 1  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    X. cxp 4717    Fn wfn 5313   -->wf 5314  (class class class)co 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004
This theorem is referenced by:  fovcl  6110  imasrng  13919
  Copyright terms: Public domain W3C validator