ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcresi Unicode version

Theorem limcresi 12982
Description: Any limit of  F is also a limit of the restriction of  F. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )

Proof of Theorem limcresi
Dummy variables  d  e  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 12974 . . . . . . 7  |-  ( x  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
21simp1d 994 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  F : dom  F --> CC )
31simp2d 995 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  dom  F 
C_  CC )
41simp3d 996 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  B  e.  CC )
52, 3, 4ellimc3ap 12977 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( F lim
CC  B )  <->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e ) ) ) )
65ibi 175 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e ) ) )
7 inss1 3323 . . . . . . . . 9  |-  ( dom 
F  i^i  C )  C_ 
dom  F
8 ssralv 3188 . . . . . . . . 9  |-  ( ( dom  F  i^i  C
)  C_  dom  F  -> 
( A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) ) )
97, 8ax-mp 5 . . . . . . . 8  |-  ( A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  <  d )  -> 
( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) )
10 elinel2 3290 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( dom  F  i^i  C )  ->  u  e.  C )
11 fvres 5485 . . . . . . . . . . . . . . 15  |-  ( u  e.  C  ->  (
( F  |`  C ) `
 u )  =  ( F `  u
) )
1210, 11syl 14 . . . . . . . . . . . . . 14  |-  ( u  e.  ( dom  F  i^i  C )  ->  (
( F  |`  C ) `
 u )  =  ( F `  u
) )
1312adantl 275 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( F  |`  C ) `  u
)  =  ( F `
 u ) )
1413fvoveq1d 5836 . . . . . . . . . . . 12  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( abs `  (
( ( F  |`  C ) `  u
)  -  x ) )  =  ( abs `  ( ( F `  u )  -  x
) ) )
1514breq1d 3971 . . . . . . . . . . 11  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e  <->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) )
1615imbi2d 229 . . . . . . . . . 10  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( ( F  |`  C ) `  u )  -  x
) )  <  e
)  <->  ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) ) )
1716biimprd 157 . . . . . . . . 9  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  (
( u #  B  /\  ( abs `  ( u  -  B ) )  <  d )  -> 
( abs `  (
( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
1817ralimdva 2521 . . . . . . . 8  |-  ( x  e.  ( F lim CC  B )  ->  ( A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
199, 18syl5 32 . . . . . . 7  |-  ( x  e.  ( F lim CC  B )  ->  ( A. u  e.  dom  F ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2019reximdv 2555 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  ( E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2120ralimdv 2522 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2221anim2d 335 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  (
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e ) )  -> 
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) ) )
236, 22mpd 13 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
24 fresin 5341 . . . . 5  |-  ( F : dom  F --> CC  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
252, 24syl 14 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
267, 3sstrid 3135 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( dom  F  i^i  C ) 
C_  CC )
2725, 26, 4ellimc3ap 12977 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( ( F  |`  C ) lim CC  B )  <->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) ) )
2823, 27mpbird 166 . 2  |-  ( x  e.  ( F lim CC  B )  ->  x  e.  ( ( F  |`  C ) lim CC  B ) )
2928ssriv 3128 1  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125   A.wral 2432   E.wrex 2433    i^i cin 3097    C_ wss 3098   class class class wbr 3961   dom cdm 4579    |` cres 4581   -->wf 5159   ` cfv 5163  (class class class)co 5814   CCcc 7709    < clt 7891    - cmin 8025   # cap 8435   RR+crp 9538   abscabs 10874   lim CC climc 12970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pm 6585  df-limced 12972
This theorem is referenced by:  dvidlemap  13007  dvcnp2cntop  13010  dvcoapbr  13018
  Copyright terms: Public domain W3C validator