| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > limcresi | Unicode version | ||
| Description: Any limit of  | 
| Ref | Expression | 
|---|---|
| limcresi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | limcrcl 14894 | 
. . . . . . 7
 | |
| 2 | 1 | simp1d 1011 | 
. . . . . 6
 | 
| 3 | 1 | simp2d 1012 | 
. . . . . 6
 | 
| 4 | 1 | simp3d 1013 | 
. . . . . 6
 | 
| 5 | 2, 3, 4 | ellimc3ap 14897 | 
. . . . 5
 | 
| 6 | 5 | ibi 176 | 
. . . 4
 | 
| 7 | inss1 3383 | 
. . . . . . . . 9
 | |
| 8 | ssralv 3247 | 
. . . . . . . . 9
 | |
| 9 | 7, 8 | ax-mp 5 | 
. . . . . . . 8
 | 
| 10 | elinel2 3350 | 
. . . . . . . . . . . . . . 15
 | |
| 11 | fvres 5582 | 
. . . . . . . . . . . . . . 15
 | |
| 12 | 10, 11 | syl 14 | 
. . . . . . . . . . . . . 14
 | 
| 13 | 12 | adantl 277 | 
. . . . . . . . . . . . 13
 | 
| 14 | 13 | fvoveq1d 5944 | 
. . . . . . . . . . . 12
 | 
| 15 | 14 | breq1d 4043 | 
. . . . . . . . . . 11
 | 
| 16 | 15 | imbi2d 230 | 
. . . . . . . . . 10
 | 
| 17 | 16 | biimprd 158 | 
. . . . . . . . 9
 | 
| 18 | 17 | ralimdva 2564 | 
. . . . . . . 8
 | 
| 19 | 9, 18 | syl5 32 | 
. . . . . . 7
 | 
| 20 | 19 | reximdv 2598 | 
. . . . . 6
 | 
| 21 | 20 | ralimdv 2565 | 
. . . . 5
 | 
| 22 | 21 | anim2d 337 | 
. . . 4
 | 
| 23 | 6, 22 | mpd 13 | 
. . 3
 | 
| 24 | fresin 5436 | 
. . . . 5
 | |
| 25 | 2, 24 | syl 14 | 
. . . 4
 | 
| 26 | 7, 3 | sstrid 3194 | 
. . . 4
 | 
| 27 | 25, 26, 4 | ellimc3ap 14897 | 
. . 3
 | 
| 28 | 23, 27 | mpbird 167 | 
. 2
 | 
| 29 | 28 | ssriv 3187 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pm 6710 df-limced 14892 | 
| This theorem is referenced by: dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvcnp2cntop 14935 dvcoapbr 14943 | 
| Copyright terms: Public domain | W3C validator |