ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcresi Unicode version

Theorem limcresi 13285
Description: Any limit of  F is also a limit of the restriction of  F. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )

Proof of Theorem limcresi
Dummy variables  d  e  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 13277 . . . . . . 7  |-  ( x  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
21simp1d 999 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  F : dom  F --> CC )
31simp2d 1000 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  dom  F 
C_  CC )
41simp3d 1001 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  B  e.  CC )
52, 3, 4ellimc3ap 13280 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( F lim
CC  B )  <->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e ) ) ) )
65ibi 175 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e ) ) )
7 inss1 3342 . . . . . . . . 9  |-  ( dom 
F  i^i  C )  C_ 
dom  F
8 ssralv 3206 . . . . . . . . 9  |-  ( ( dom  F  i^i  C
)  C_  dom  F  -> 
( A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) ) )
97, 8ax-mp 5 . . . . . . . 8  |-  ( A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  <  d )  -> 
( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) )
10 elinel2 3309 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( dom  F  i^i  C )  ->  u  e.  C )
11 fvres 5510 . . . . . . . . . . . . . . 15  |-  ( u  e.  C  ->  (
( F  |`  C ) `
 u )  =  ( F `  u
) )
1210, 11syl 14 . . . . . . . . . . . . . 14  |-  ( u  e.  ( dom  F  i^i  C )  ->  (
( F  |`  C ) `
 u )  =  ( F `  u
) )
1312adantl 275 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( F  |`  C ) `  u
)  =  ( F `
 u ) )
1413fvoveq1d 5864 . . . . . . . . . . . 12  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( abs `  (
( ( F  |`  C ) `  u
)  -  x ) )  =  ( abs `  ( ( F `  u )  -  x
) ) )
1514breq1d 3992 . . . . . . . . . . 11  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e  <->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) )
1615imbi2d 229 . . . . . . . . . 10  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( ( F  |`  C ) `  u )  -  x
) )  <  e
)  <->  ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) ) )
1716biimprd 157 . . . . . . . . 9  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  (
( u #  B  /\  ( abs `  ( u  -  B ) )  <  d )  -> 
( abs `  (
( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
1817ralimdva 2533 . . . . . . . 8  |-  ( x  e.  ( F lim CC  B )  ->  ( A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
199, 18syl5 32 . . . . . . 7  |-  ( x  e.  ( F lim CC  B )  ->  ( A. u  e.  dom  F ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2019reximdv 2567 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  ( E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2120ralimdv 2534 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2221anim2d 335 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  (
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e ) )  -> 
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) ) )
236, 22mpd 13 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
24 fresin 5366 . . . . 5  |-  ( F : dom  F --> CC  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
252, 24syl 14 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
267, 3sstrid 3153 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( dom  F  i^i  C ) 
C_  CC )
2725, 26, 4ellimc3ap 13280 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( ( F  |`  C ) lim CC  B )  <->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) ) )
2823, 27mpbird 166 . 2  |-  ( x  e.  ( F lim CC  B )  ->  x  e.  ( ( F  |`  C ) lim CC  B ) )
2928ssriv 3146 1  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445    i^i cin 3115    C_ wss 3116   class class class wbr 3982   dom cdm 4604    |` cres 4606   -->wf 5184   ` cfv 5188  (class class class)co 5842   CCcc 7751    < clt 7933    - cmin 8069   # cap 8479   RR+crp 9589   abscabs 10939   lim CC climc 13273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pm 6617  df-limced 13275
This theorem is referenced by:  dvidlemap  13310  dvcnp2cntop  13313  dvcoapbr  13321
  Copyright terms: Public domain W3C validator