ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcresi Unicode version

Theorem limcresi 15138
Description: Any limit of  F is also a limit of the restriction of  F. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )

Proof of Theorem limcresi
Dummy variables  d  e  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 15130 . . . . . . 7  |-  ( x  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
21simp1d 1012 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  F : dom  F --> CC )
31simp2d 1013 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  dom  F 
C_  CC )
41simp3d 1014 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  B  e.  CC )
52, 3, 4ellimc3ap 15133 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( F lim
CC  B )  <->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e ) ) ) )
65ibi 176 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e ) ) )
7 inss1 3393 . . . . . . . . 9  |-  ( dom 
F  i^i  C )  C_ 
dom  F
8 ssralv 3257 . . . . . . . . 9  |-  ( ( dom  F  i^i  C
)  C_  dom  F  -> 
( A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) ) )
97, 8ax-mp 5 . . . . . . . 8  |-  ( A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  <  d )  -> 
( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) )
10 elinel2 3360 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( dom  F  i^i  C )  ->  u  e.  C )
11 fvres 5600 . . . . . . . . . . . . . . 15  |-  ( u  e.  C  ->  (
( F  |`  C ) `
 u )  =  ( F `  u
) )
1210, 11syl 14 . . . . . . . . . . . . . 14  |-  ( u  e.  ( dom  F  i^i  C )  ->  (
( F  |`  C ) `
 u )  =  ( F `  u
) )
1312adantl 277 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( F  |`  C ) `  u
)  =  ( F `
 u ) )
1413fvoveq1d 5966 . . . . . . . . . . . 12  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( abs `  (
( ( F  |`  C ) `  u
)  -  x ) )  =  ( abs `  ( ( F `  u )  -  x
) ) )
1514breq1d 4054 . . . . . . . . . . 11  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e  <->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) )
1615imbi2d 230 . . . . . . . . . 10  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( ( F  |`  C ) `  u )  -  x
) )  <  e
)  <->  ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) ) )
1716biimprd 158 . . . . . . . . 9  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  (
( u #  B  /\  ( abs `  ( u  -  B ) )  <  d )  -> 
( abs `  (
( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
1817ralimdva 2573 . . . . . . . 8  |-  ( x  e.  ( F lim CC  B )  ->  ( A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
199, 18syl5 32 . . . . . . 7  |-  ( x  e.  ( F lim CC  B )  ->  ( A. u  e.  dom  F ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2019reximdv 2607 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  ( E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2120ralimdv 2574 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2221anim2d 337 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  (
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e ) )  -> 
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) ) )
236, 22mpd 13 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
24 fresin 5454 . . . . 5  |-  ( F : dom  F --> CC  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
252, 24syl 14 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
267, 3sstrid 3204 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( dom  F  i^i  C ) 
C_  CC )
2725, 26, 4ellimc3ap 15133 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( ( F  |`  C ) lim CC  B )  <->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) ) )
2823, 27mpbird 167 . 2  |-  ( x  e.  ( F lim CC  B )  ->  x  e.  ( ( F  |`  C ) lim CC  B ) )
2928ssriv 3197 1  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    i^i cin 3165    C_ wss 3166   class class class wbr 4044   dom cdm 4675    |` cres 4677   -->wf 5267   ` cfv 5271  (class class class)co 5944   CCcc 7923    < clt 8107    - cmin 8243   # cap 8654   RR+crp 9775   abscabs 11308   lim CC climc 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pm 6738  df-limced 15128
This theorem is referenced by:  dvidlemap  15163  dvidrelem  15164  dvidsslem  15165  dvcnp2cntop  15171  dvcoapbr  15179
  Copyright terms: Public domain W3C validator