ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcresi Unicode version

Theorem limcresi 14986
Description: Any limit of  F is also a limit of the restriction of  F. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )

Proof of Theorem limcresi
Dummy variables  d  e  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 14978 . . . . . . 7  |-  ( x  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
21simp1d 1011 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  F : dom  F --> CC )
31simp2d 1012 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  dom  F 
C_  CC )
41simp3d 1013 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  B  e.  CC )
52, 3, 4ellimc3ap 14981 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( F lim
CC  B )  <->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e ) ) ) )
65ibi 176 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e ) ) )
7 inss1 3384 . . . . . . . . 9  |-  ( dom 
F  i^i  C )  C_ 
dom  F
8 ssralv 3248 . . . . . . . . 9  |-  ( ( dom  F  i^i  C
)  C_  dom  F  -> 
( A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) ) )
97, 8ax-mp 5 . . . . . . . 8  |-  ( A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  <  d )  -> 
( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) )
10 elinel2 3351 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( dom  F  i^i  C )  ->  u  e.  C )
11 fvres 5585 . . . . . . . . . . . . . . 15  |-  ( u  e.  C  ->  (
( F  |`  C ) `
 u )  =  ( F `  u
) )
1210, 11syl 14 . . . . . . . . . . . . . 14  |-  ( u  e.  ( dom  F  i^i  C )  ->  (
( F  |`  C ) `
 u )  =  ( F `  u
) )
1312adantl 277 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( F  |`  C ) `  u
)  =  ( F `
 u ) )
1413fvoveq1d 5947 . . . . . . . . . . . 12  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( abs `  (
( ( F  |`  C ) `  u
)  -  x ) )  =  ( abs `  ( ( F `  u )  -  x
) ) )
1514breq1d 4044 . . . . . . . . . . 11  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e  <->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) )
1615imbi2d 230 . . . . . . . . . 10  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( ( F  |`  C ) `  u )  -  x
) )  <  e
)  <->  ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  u )  -  x
) )  <  e
) ) )
1716biimprd 158 . . . . . . . . 9  |-  ( ( x  e.  ( F lim
CC  B )  /\  u  e.  ( dom  F  i^i  C ) )  ->  ( ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  (
( u #  B  /\  ( abs `  ( u  -  B ) )  <  d )  -> 
( abs `  (
( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
1817ralimdva 2564 . . . . . . . 8  |-  ( x  e.  ( F lim CC  B )  ->  ( A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
199, 18syl5 32 . . . . . . 7  |-  ( x  e.  ( F lim CC  B )  ->  ( A. u  e.  dom  F ( ( u #  B  /\  ( abs `  (
u  -  B ) )  <  d )  ->  ( abs `  (
( F `  u
)  -  x ) )  <  e )  ->  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2019reximdv 2598 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  ( E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2120ralimdv 2565 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. u  e. 
dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e )  ->  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
2221anim2d 337 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  (
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. u  e.  dom  F ( ( u #  B  /\  ( abs `  ( u  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 u )  -  x ) )  < 
e ) )  -> 
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) ) )
236, 22mpd 13 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C ) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) )
24 fresin 5439 . . . . 5  |-  ( F : dom  F --> CC  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
252, 24syl 14 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
267, 3sstrid 3195 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( dom  F  i^i  C ) 
C_  CC )
2725, 26, 4ellimc3ap 14981 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( ( F  |`  C ) lim CC  B )  <->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. u  e.  ( dom  F  i^i  C
) ( ( u #  B  /\  ( abs `  ( u  -  B
) )  <  d
)  ->  ( abs `  ( ( ( F  |`  C ) `  u
)  -  x ) )  <  e ) ) ) )
2823, 27mpbird 167 . 2  |-  ( x  e.  ( F lim CC  B )  ->  x  e.  ( ( F  |`  C ) lim CC  B ) )
2928ssriv 3188 1  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    i^i cin 3156    C_ wss 3157   class class class wbr 4034   dom cdm 4664    |` cres 4666   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894    < clt 8078    - cmin 8214   # cap 8625   RR+crp 9745   abscabs 11179   lim CC climc 14974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pm 6719  df-limced 14976
This theorem is referenced by:  dvidlemap  15011  dvidrelem  15012  dvidsslem  15013  dvcnp2cntop  15019  dvcoapbr  15027
  Copyright terms: Public domain W3C validator