Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > limcresi | Unicode version |
Description: Any limit of is also a limit of the restriction of . (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
limcresi | lim lim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcrcl 13421 | . . . . . . 7 lim | |
2 | 1 | simp1d 1004 | . . . . . 6 lim |
3 | 1 | simp2d 1005 | . . . . . 6 lim |
4 | 1 | simp3d 1006 | . . . . . 6 lim |
5 | 2, 3, 4 | ellimc3ap 13424 | . . . . 5 lim lim # |
6 | 5 | ibi 175 | . . . 4 lim # |
7 | inss1 3347 | . . . . . . . . 9 | |
8 | ssralv 3211 | . . . . . . . . 9 # # | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 # # |
10 | elinel2 3314 | . . . . . . . . . . . . . . 15 | |
11 | fvres 5520 | . . . . . . . . . . . . . . 15 | |
12 | 10, 11 | syl 14 | . . . . . . . . . . . . . 14 |
13 | 12 | adantl 275 | . . . . . . . . . . . . 13 lim |
14 | 13 | fvoveq1d 5875 | . . . . . . . . . . . 12 lim |
15 | 14 | breq1d 3999 | . . . . . . . . . . 11 lim |
16 | 15 | imbi2d 229 | . . . . . . . . . 10 lim # # |
17 | 16 | biimprd 157 | . . . . . . . . 9 lim # # |
18 | 17 | ralimdva 2537 | . . . . . . . 8 lim # # |
19 | 9, 18 | syl5 32 | . . . . . . 7 lim # # |
20 | 19 | reximdv 2571 | . . . . . 6 lim # # |
21 | 20 | ralimdv 2538 | . . . . 5 lim # # |
22 | 21 | anim2d 335 | . . . 4 lim # # |
23 | 6, 22 | mpd 13 | . . 3 lim # |
24 | fresin 5376 | . . . . 5 | |
25 | 2, 24 | syl 14 | . . . 4 lim |
26 | 7, 3 | sstrid 3158 | . . . 4 lim |
27 | 25, 26, 4 | ellimc3ap 13424 | . . 3 lim lim # |
28 | 23, 27 | mpbird 166 | . 2 lim lim |
29 | 28 | ssriv 3151 | 1 lim lim |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 wrex 2449 cin 3120 wss 3121 class class class wbr 3989 cdm 4611 cres 4613 wf 5194 cfv 5198 (class class class)co 5853 cc 7772 clt 7954 cmin 8090 # cap 8500 crp 9610 cabs 10961 lim climc 13417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pm 6629 df-limced 13419 |
This theorem is referenced by: dvidlemap 13454 dvcnp2cntop 13457 dvcoapbr 13465 |
Copyright terms: Public domain | W3C validator |