| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limcresi | Unicode version | ||
| Description: Any limit of |
| Ref | Expression |
|---|---|
| limcresi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcrcl 15130 |
. . . . . . 7
| |
| 2 | 1 | simp1d 1012 |
. . . . . 6
|
| 3 | 1 | simp2d 1013 |
. . . . . 6
|
| 4 | 1 | simp3d 1014 |
. . . . . 6
|
| 5 | 2, 3, 4 | ellimc3ap 15133 |
. . . . 5
|
| 6 | 5 | ibi 176 |
. . . 4
|
| 7 | inss1 3393 |
. . . . . . . . 9
| |
| 8 | ssralv 3257 |
. . . . . . . . 9
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . 8
|
| 10 | elinel2 3360 |
. . . . . . . . . . . . . . 15
| |
| 11 | fvres 5600 |
. . . . . . . . . . . . . . 15
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . . . . . . 14
|
| 13 | 12 | adantl 277 |
. . . . . . . . . . . . 13
|
| 14 | 13 | fvoveq1d 5966 |
. . . . . . . . . . . 12
|
| 15 | 14 | breq1d 4054 |
. . . . . . . . . . 11
|
| 16 | 15 | imbi2d 230 |
. . . . . . . . . 10
|
| 17 | 16 | biimprd 158 |
. . . . . . . . 9
|
| 18 | 17 | ralimdva 2573 |
. . . . . . . 8
|
| 19 | 9, 18 | syl5 32 |
. . . . . . 7
|
| 20 | 19 | reximdv 2607 |
. . . . . 6
|
| 21 | 20 | ralimdv 2574 |
. . . . 5
|
| 22 | 21 | anim2d 337 |
. . . 4
|
| 23 | 6, 22 | mpd 13 |
. . 3
|
| 24 | fresin 5454 |
. . . . 5
| |
| 25 | 2, 24 | syl 14 |
. . . 4
|
| 26 | 7, 3 | sstrid 3204 |
. . . 4
|
| 27 | 25, 26, 4 | ellimc3ap 15133 |
. . 3
|
| 28 | 23, 27 | mpbird 167 |
. 2
|
| 29 | 28 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pm 6738 df-limced 15128 |
| This theorem is referenced by: dvidlemap 15163 dvidrelem 15164 dvidsslem 15165 dvcnp2cntop 15171 dvcoapbr 15179 |
| Copyright terms: Public domain | W3C validator |