| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fresin | GIF version | ||
| Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| fresin | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3424 | . . 3 ⊢ (𝐴 ∩ 𝑋) ⊆ 𝐴 | |
| 2 | fssres 5500 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐴 ∩ 𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵) |
| 4 | resres 5016 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴 ∩ 𝑋)) | |
| 5 | ffn 5472 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 6 | fnresdm 5431 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝐴) = 𝐹) |
| 8 | 7 | reseq1d 5003 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ 𝐴) ↾ 𝑋) = (𝐹 ↾ 𝑋)) |
| 9 | 4, 8 | eqtr3id 2276 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐴 ∩ 𝑋)) = (𝐹 ↾ 𝑋)) |
| 10 | 9 | feq1d 5459 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 ↾ (𝐴 ∩ 𝑋)):(𝐴 ∩ 𝑋)⟶𝐵 ↔ (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵)) |
| 11 | 3, 10 | mpbid 147 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ 𝑋):(𝐴 ∩ 𝑋)⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∩ cin 3196 ⊆ wss 3197 ↾ cres 4720 Fn wfn 5312 ⟶wf 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-fun 5319 df-fn 5320 df-f 5321 |
| This theorem is referenced by: limcresi 15334 |
| Copyright terms: Public domain | W3C validator |