ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fresin GIF version

Theorem fresin 5433
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
fresin (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)

Proof of Theorem fresin
StepHypRef Expression
1 inss1 3380 . . 3 (𝐴𝑋) ⊆ 𝐴
2 fssres 5430 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐴𝑋) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
31, 2mpan2 425 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵)
4 resres 4955 . . . 4 ((𝐹𝐴) ↾ 𝑋) = (𝐹 ↾ (𝐴𝑋))
5 ffn 5404 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
6 fnresdm 5364 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
75, 6syl 14 . . . . 5 (𝐹:𝐴𝐵 → (𝐹𝐴) = 𝐹)
87reseq1d 4942 . . . 4 (𝐹:𝐴𝐵 → ((𝐹𝐴) ↾ 𝑋) = (𝐹𝑋))
94, 8eqtr3id 2240 . . 3 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴𝑋)) = (𝐹𝑋))
109feq1d 5391 . 2 (𝐹:𝐴𝐵 → ((𝐹 ↾ (𝐴𝑋)):(𝐴𝑋)⟶𝐵 ↔ (𝐹𝑋):(𝐴𝑋)⟶𝐵))
113, 10mpbid 147 1 (𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cin 3153  wss 3154  cres 4662   Fn wfn 5250  wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  limcresi  14845
  Copyright terms: Public domain W3C validator