| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetres2 | Unicode version | ||
| Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetres2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetf 14912 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | simpr 110 |
. . . 4
| |
| 4 | xpss12 4800 |
. . . 4
| |
| 5 | 3, 3, 4 | syl2anc 411 |
. . 3
|
| 6 | 2, 5 | fssresd 5474 |
. 2
|
| 7 | simpr 110 |
. . . . . 6
| |
| 8 | 7, 7 | ovresd 6110 |
. . . . 5
|
| 9 | simpll 527 |
. . . . . 6
| |
| 10 | 3 | sselda 3201 |
. . . . . 6
|
| 11 | psmet0 14914 |
. . . . . 6
| |
| 12 | 9, 10, 11 | syl2anc 411 |
. . . . 5
|
| 13 | 8, 12 | eqtrd 2240 |
. . . 4
|
| 14 | 9 | ad2antrr 488 |
. . . . . . . 8
|
| 15 | 3 | ad2antrr 488 |
. . . . . . . . 9
|
| 16 | 15 | sselda 3201 |
. . . . . . . 8
|
| 17 | 10 | ad2antrr 488 |
. . . . . . . 8
|
| 18 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 19 | 18 | sselda 3201 |
. . . . . . . . 9
|
| 20 | 19 | adantr 276 |
. . . . . . . 8
|
| 21 | psmettri2 14915 |
. . . . . . . 8
| |
| 22 | 14, 16, 17, 20, 21 | syl13anc 1252 |
. . . . . . 7
|
| 23 | 7 | adantr 276 |
. . . . . . . . 9
|
| 24 | simpr 110 |
. . . . . . . . 9
| |
| 25 | 23, 24 | ovresd 6110 |
. . . . . . . 8
|
| 26 | 25 | adantr 276 |
. . . . . . 7
|
| 27 | simpr 110 |
. . . . . . . . 9
| |
| 28 | 7 | ad2antrr 488 |
. . . . . . . . 9
|
| 29 | 27, 28 | ovresd 6110 |
. . . . . . . 8
|
| 30 | 24 | adantr 276 |
. . . . . . . . 9
|
| 31 | 27, 30 | ovresd 6110 |
. . . . . . . 8
|
| 32 | 29, 31 | oveq12d 5985 |
. . . . . . 7
|
| 33 | 22, 26, 32 | 3brtr4d 4091 |
. . . . . 6
|
| 34 | 33 | ralrimiva 2581 |
. . . . 5
|
| 35 | 34 | ralrimiva 2581 |
. . . 4
|
| 36 | 13, 35 | jca 306 |
. . 3
|
| 37 | 36 | ralrimiva 2581 |
. 2
|
| 38 | df-psmet 14420 |
. . . . . 6
| |
| 39 | 38 | mptrcl 5685 |
. . . . 5
|
| 40 | 39 | adantr 276 |
. . . 4
|
| 41 | 40, 3 | ssexd 4200 |
. . 3
|
| 42 | ispsmet 14910 |
. . 3
| |
| 43 | 41, 42 | syl 14 |
. 2
|
| 44 | 6, 37, 43 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-psmet 14420 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |