Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > psmetres2 | Unicode version |
Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
psmetres2 | PsMet PsMet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psmetf 12965 | . . . 4 PsMet | |
2 | 1 | adantr 274 | . . 3 PsMet |
3 | simpr 109 | . . . 4 PsMet | |
4 | xpss12 4711 | . . . 4 | |
5 | 3, 3, 4 | syl2anc 409 | . . 3 PsMet |
6 | 2, 5 | fssresd 5364 | . 2 PsMet |
7 | simpr 109 | . . . . . 6 PsMet | |
8 | 7, 7 | ovresd 5982 | . . . . 5 PsMet |
9 | simpll 519 | . . . . . 6 PsMet PsMet | |
10 | 3 | sselda 3142 | . . . . . 6 PsMet |
11 | psmet0 12967 | . . . . . 6 PsMet | |
12 | 9, 10, 11 | syl2anc 409 | . . . . 5 PsMet |
13 | 8, 12 | eqtrd 2198 | . . . 4 PsMet |
14 | 9 | ad2antrr 480 | . . . . . . . 8 PsMet PsMet |
15 | 3 | ad2antrr 480 | . . . . . . . . 9 PsMet |
16 | 15 | sselda 3142 | . . . . . . . 8 PsMet |
17 | 10 | ad2antrr 480 | . . . . . . . 8 PsMet |
18 | 3 | adantr 274 | . . . . . . . . . 10 PsMet |
19 | 18 | sselda 3142 | . . . . . . . . 9 PsMet |
20 | 19 | adantr 274 | . . . . . . . 8 PsMet |
21 | psmettri2 12968 | . . . . . . . 8 PsMet | |
22 | 14, 16, 17, 20, 21 | syl13anc 1230 | . . . . . . 7 PsMet |
23 | 7 | adantr 274 | . . . . . . . . 9 PsMet |
24 | simpr 109 | . . . . . . . . 9 PsMet | |
25 | 23, 24 | ovresd 5982 | . . . . . . . 8 PsMet |
26 | 25 | adantr 274 | . . . . . . 7 PsMet |
27 | simpr 109 | . . . . . . . . 9 PsMet | |
28 | 7 | ad2antrr 480 | . . . . . . . . 9 PsMet |
29 | 27, 28 | ovresd 5982 | . . . . . . . 8 PsMet |
30 | 24 | adantr 274 | . . . . . . . . 9 PsMet |
31 | 27, 30 | ovresd 5982 | . . . . . . . 8 PsMet |
32 | 29, 31 | oveq12d 5860 | . . . . . . 7 PsMet |
33 | 22, 26, 32 | 3brtr4d 4014 | . . . . . 6 PsMet |
34 | 33 | ralrimiva 2539 | . . . . 5 PsMet |
35 | 34 | ralrimiva 2539 | . . . 4 PsMet |
36 | 13, 35 | jca 304 | . . 3 PsMet |
37 | 36 | ralrimiva 2539 | . 2 PsMet |
38 | df-psmet 12627 | . . . . . 6 PsMet | |
39 | 38 | mptrcl 5568 | . . . . 5 PsMet |
40 | 39 | adantr 274 | . . . 4 PsMet |
41 | 40, 3 | ssexd 4122 | . . 3 PsMet |
42 | ispsmet 12963 | . . 3 PsMet | |
43 | 41, 42 | syl 14 | . 2 PsMet PsMet |
44 | 6, 37, 43 | mpbir2and 934 | 1 PsMet PsMet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 crab 2448 cvv 2726 wss 3116 class class class wbr 3982 cxp 4602 cres 4606 wf 5184 cfv 5188 (class class class)co 5842 cmap 6614 cc0 7753 cxr 7932 cle 7934 cxad 9706 PsMetcpsmet 12619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-psmet 12627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |