| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetres2 | Unicode version | ||
| Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetres2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetf 14561 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | simpr 110 |
. . . 4
| |
| 4 | xpss12 4770 |
. . . 4
| |
| 5 | 3, 3, 4 | syl2anc 411 |
. . 3
|
| 6 | 2, 5 | fssresd 5434 |
. 2
|
| 7 | simpr 110 |
. . . . . 6
| |
| 8 | 7, 7 | ovresd 6064 |
. . . . 5
|
| 9 | simpll 527 |
. . . . . 6
| |
| 10 | 3 | sselda 3183 |
. . . . . 6
|
| 11 | psmet0 14563 |
. . . . . 6
| |
| 12 | 9, 10, 11 | syl2anc 411 |
. . . . 5
|
| 13 | 8, 12 | eqtrd 2229 |
. . . 4
|
| 14 | 9 | ad2antrr 488 |
. . . . . . . 8
|
| 15 | 3 | ad2antrr 488 |
. . . . . . . . 9
|
| 16 | 15 | sselda 3183 |
. . . . . . . 8
|
| 17 | 10 | ad2antrr 488 |
. . . . . . . 8
|
| 18 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 19 | 18 | sselda 3183 |
. . . . . . . . 9
|
| 20 | 19 | adantr 276 |
. . . . . . . 8
|
| 21 | psmettri2 14564 |
. . . . . . . 8
| |
| 22 | 14, 16, 17, 20, 21 | syl13anc 1251 |
. . . . . . 7
|
| 23 | 7 | adantr 276 |
. . . . . . . . 9
|
| 24 | simpr 110 |
. . . . . . . . 9
| |
| 25 | 23, 24 | ovresd 6064 |
. . . . . . . 8
|
| 26 | 25 | adantr 276 |
. . . . . . 7
|
| 27 | simpr 110 |
. . . . . . . . 9
| |
| 28 | 7 | ad2antrr 488 |
. . . . . . . . 9
|
| 29 | 27, 28 | ovresd 6064 |
. . . . . . . 8
|
| 30 | 24 | adantr 276 |
. . . . . . . . 9
|
| 31 | 27, 30 | ovresd 6064 |
. . . . . . . 8
|
| 32 | 29, 31 | oveq12d 5940 |
. . . . . . 7
|
| 33 | 22, 26, 32 | 3brtr4d 4065 |
. . . . . 6
|
| 34 | 33 | ralrimiva 2570 |
. . . . 5
|
| 35 | 34 | ralrimiva 2570 |
. . . 4
|
| 36 | 13, 35 | jca 306 |
. . 3
|
| 37 | 36 | ralrimiva 2570 |
. 2
|
| 38 | df-psmet 14099 |
. . . . . 6
| |
| 39 | 38 | mptrcl 5644 |
. . . . 5
|
| 40 | 39 | adantr 276 |
. . . 4
|
| 41 | 40, 3 | ssexd 4173 |
. . 3
|
| 42 | ispsmet 14559 |
. . 3
| |
| 43 | 41, 42 | syl 14 |
. 2
|
| 44 | 6, 37, 43 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-psmet 14099 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |