ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetres2 Unicode version

Theorem psmetres2 14290
Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmetres2  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  (PsMet `  R )
)

Proof of Theorem psmetres2
Dummy variables  a  b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psmetf 14282 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
21adantr 276 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  D : ( X  X.  X ) --> RR* )
3 simpr 110 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  R  C_  X )
4 xpss12 4751 . . . 4  |-  ( ( R  C_  X  /\  R  C_  X )  -> 
( R  X.  R
)  C_  ( X  X.  X ) )
53, 3, 4syl2anc 411 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( R  X.  R )  C_  ( X  X.  X
) )
62, 5fssresd 5411 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) ) : ( R  X.  R
) --> RR* )
7 simpr 110 . . . . . 6  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  a  e.  R )
87, 7ovresd 6037 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) a )  =  ( a D a ) )
9 simpll 527 . . . . . 6  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  D  e.  (PsMet `  X )
)
103sselda 3170 . . . . . 6  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  a  e.  X )
11 psmet0 14284 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
a D a )  =  0 )
129, 10, 11syl2anc 411 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  (
a D a )  =  0 )
138, 12eqtrd 2222 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) a )  =  0 )
149ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  D  e.  (PsMet `  X )
)
153ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  R  C_  X )
1615sselda 3170 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  c  e.  X )
1710ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  a  e.  X )
183adantr 276 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  R  C_  X )
1918sselda 3170 . . . . . . . . 9  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  b  e.  X )
2019adantr 276 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  b  e.  X )
21 psmettri2 14285 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  (
c  e.  X  /\  a  e.  X  /\  b  e.  X )
)  ->  ( a D b )  <_ 
( ( c D a ) +e
( c D b ) ) )
2214, 16, 17, 20, 21syl13anc 1251 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) )
237adantr 276 . . . . . . . . 9  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  a  e.  R )
24 simpr 110 . . . . . . . . 9  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  b  e.  R )
2523, 24ovresd 6037 . . . . . . . 8  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) b )  =  ( a D b ) )
2625adantr 276 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) b )  =  ( a D b ) )
27 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  c  e.  R )
287ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  a  e.  R )
2927, 28ovresd 6037 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
c ( D  |`  ( R  X.  R
) ) a )  =  ( c D a ) )
3024adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  b  e.  R )
3127, 30ovresd 6037 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
c ( D  |`  ( R  X.  R
) ) b )  =  ( c D b ) )
3229, 31oveq12d 5914 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
( c ( D  |`  ( R  X.  R
) ) a ) +e ( c ( D  |`  ( R  X.  R ) ) b ) )  =  ( ( c D a ) +e
( c D b ) ) )
3322, 26, 323brtr4d 4050 . . . . . 6  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  R  C_  X
)  /\  a  e.  R )  /\  b  e.  R )  /\  c  e.  R )  ->  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) )
3433ralrimiva 2563 . . . . 5  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R
)  /\  b  e.  R )  ->  A. c  e.  R  ( a
( D  |`  ( R  X.  R ) ) b )  <_  (
( c ( D  |`  ( R  X.  R
) ) a ) +e ( c ( D  |`  ( R  X.  R ) ) b ) ) )
3534ralrimiva 2563 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  A. b  e.  R  A. c  e.  R  ( a
( D  |`  ( R  X.  R ) ) b )  <_  (
( c ( D  |`  ( R  X.  R
) ) a ) +e ( c ( D  |`  ( R  X.  R ) ) b ) ) )
3613, 35jca 306 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  /\  a  e.  R )  ->  (
( a ( D  |`  ( R  X.  R
) ) a )  =  0  /\  A. b  e.  R  A. c  e.  R  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) ) )
3736ralrimiva 2563 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  A. a  e.  R  ( (
a ( D  |`  ( R  X.  R
) ) a )  =  0  /\  A. b  e.  R  A. c  e.  R  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) ) )
38 df-psmet 13856 . . . . . 6  |- PsMet  =  ( a  e.  _V  |->  { b  e.  ( RR*  ^m  ( a  X.  a
) )  |  A. c  e.  a  (
( c b c )  =  0  /\ 
A. d  e.  a 
A. e  e.  a  ( c b d )  <_  ( (
e b c ) +e ( e b d ) ) ) } )
3938mptrcl 5619 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
4039adantr 276 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  X  e.  _V )
4140, 3ssexd 4158 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  R  e.  _V )
42 ispsmet 14280 . . 3  |-  ( R  e.  _V  ->  (
( D  |`  ( R  X.  R ) )  e.  (PsMet `  R
)  <->  ( ( D  |`  ( R  X.  R
) ) : ( R  X.  R ) -->
RR*  /\  A. a  e.  R  ( (
a ( D  |`  ( R  X.  R
) ) a )  =  0  /\  A. b  e.  R  A. c  e.  R  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) ) ) ) )
4341, 42syl 14 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  (
( D  |`  ( R  X.  R ) )  e.  (PsMet `  R
)  <->  ( ( D  |`  ( R  X.  R
) ) : ( R  X.  R ) -->
RR*  /\  A. a  e.  R  ( (
a ( D  |`  ( R  X.  R
) ) a )  =  0  /\  A. b  e.  R  A. c  e.  R  (
a ( D  |`  ( R  X.  R
) ) b )  <_  ( ( c ( D  |`  ( R  X.  R ) ) a ) +e
( c ( D  |`  ( R  X.  R
) ) b ) ) ) ) ) )
446, 37, 43mpbir2and 946 1  |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  (PsMet `  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   {crab 2472   _Vcvv 2752    C_ wss 3144   class class class wbr 4018    X. cxp 4642    |` cres 4646   -->wf 5231   ` cfv 5235  (class class class)co 5896    ^m cmap 6674   0cc0 7841   RR*cxr 8021    <_ cle 8023   +ecxad 9800  PsMetcpsmet 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-map 6676  df-pnf 8024  df-mnf 8025  df-xr 8026  df-psmet 13856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator