| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetres2 | Unicode version | ||
| Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetres2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetf 14999 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | simpr 110 |
. . . 4
| |
| 4 | xpss12 4826 |
. . . 4
| |
| 5 | 3, 3, 4 | syl2anc 411 |
. . 3
|
| 6 | 2, 5 | fssresd 5502 |
. 2
|
| 7 | simpr 110 |
. . . . . 6
| |
| 8 | 7, 7 | ovresd 6146 |
. . . . 5
|
| 9 | simpll 527 |
. . . . . 6
| |
| 10 | 3 | sselda 3224 |
. . . . . 6
|
| 11 | psmet0 15001 |
. . . . . 6
| |
| 12 | 9, 10, 11 | syl2anc 411 |
. . . . 5
|
| 13 | 8, 12 | eqtrd 2262 |
. . . 4
|
| 14 | 9 | ad2antrr 488 |
. . . . . . . 8
|
| 15 | 3 | ad2antrr 488 |
. . . . . . . . 9
|
| 16 | 15 | sselda 3224 |
. . . . . . . 8
|
| 17 | 10 | ad2antrr 488 |
. . . . . . . 8
|
| 18 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 19 | 18 | sselda 3224 |
. . . . . . . . 9
|
| 20 | 19 | adantr 276 |
. . . . . . . 8
|
| 21 | psmettri2 15002 |
. . . . . . . 8
| |
| 22 | 14, 16, 17, 20, 21 | syl13anc 1273 |
. . . . . . 7
|
| 23 | 7 | adantr 276 |
. . . . . . . . 9
|
| 24 | simpr 110 |
. . . . . . . . 9
| |
| 25 | 23, 24 | ovresd 6146 |
. . . . . . . 8
|
| 26 | 25 | adantr 276 |
. . . . . . 7
|
| 27 | simpr 110 |
. . . . . . . . 9
| |
| 28 | 7 | ad2antrr 488 |
. . . . . . . . 9
|
| 29 | 27, 28 | ovresd 6146 |
. . . . . . . 8
|
| 30 | 24 | adantr 276 |
. . . . . . . . 9
|
| 31 | 27, 30 | ovresd 6146 |
. . . . . . . 8
|
| 32 | 29, 31 | oveq12d 6019 |
. . . . . . 7
|
| 33 | 22, 26, 32 | 3brtr4d 4115 |
. . . . . 6
|
| 34 | 33 | ralrimiva 2603 |
. . . . 5
|
| 35 | 34 | ralrimiva 2603 |
. . . 4
|
| 36 | 13, 35 | jca 306 |
. . 3
|
| 37 | 36 | ralrimiva 2603 |
. 2
|
| 38 | df-psmet 14507 |
. . . . . 6
| |
| 39 | 38 | mptrcl 5717 |
. . . . 5
|
| 40 | 39 | adantr 276 |
. . . 4
|
| 41 | 40, 3 | ssexd 4224 |
. . 3
|
| 42 | ispsmet 14997 |
. . 3
| |
| 43 | 41, 42 | syl 14 |
. 2
|
| 44 | 6, 37, 43 | mpbir2and 950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-map 6797 df-pnf 8183 df-mnf 8184 df-xr 8185 df-psmet 14507 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |