Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > psmetres2 | Unicode version |
Description: Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
psmetres2 | PsMet PsMet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psmetf 13078 | . . . 4 PsMet | |
2 | 1 | adantr 274 | . . 3 PsMet |
3 | simpr 109 | . . . 4 PsMet | |
4 | xpss12 4716 | . . . 4 | |
5 | 3, 3, 4 | syl2anc 409 | . . 3 PsMet |
6 | 2, 5 | fssresd 5372 | . 2 PsMet |
7 | simpr 109 | . . . . . 6 PsMet | |
8 | 7, 7 | ovresd 5990 | . . . . 5 PsMet |
9 | simpll 524 | . . . . . 6 PsMet PsMet | |
10 | 3 | sselda 3147 | . . . . . 6 PsMet |
11 | psmet0 13080 | . . . . . 6 PsMet | |
12 | 9, 10, 11 | syl2anc 409 | . . . . 5 PsMet |
13 | 8, 12 | eqtrd 2203 | . . . 4 PsMet |
14 | 9 | ad2antrr 485 | . . . . . . . 8 PsMet PsMet |
15 | 3 | ad2antrr 485 | . . . . . . . . 9 PsMet |
16 | 15 | sselda 3147 | . . . . . . . 8 PsMet |
17 | 10 | ad2antrr 485 | . . . . . . . 8 PsMet |
18 | 3 | adantr 274 | . . . . . . . . . 10 PsMet |
19 | 18 | sselda 3147 | . . . . . . . . 9 PsMet |
20 | 19 | adantr 274 | . . . . . . . 8 PsMet |
21 | psmettri2 13081 | . . . . . . . 8 PsMet | |
22 | 14, 16, 17, 20, 21 | syl13anc 1235 | . . . . . . 7 PsMet |
23 | 7 | adantr 274 | . . . . . . . . 9 PsMet |
24 | simpr 109 | . . . . . . . . 9 PsMet | |
25 | 23, 24 | ovresd 5990 | . . . . . . . 8 PsMet |
26 | 25 | adantr 274 | . . . . . . 7 PsMet |
27 | simpr 109 | . . . . . . . . 9 PsMet | |
28 | 7 | ad2antrr 485 | . . . . . . . . 9 PsMet |
29 | 27, 28 | ovresd 5990 | . . . . . . . 8 PsMet |
30 | 24 | adantr 274 | . . . . . . . . 9 PsMet |
31 | 27, 30 | ovresd 5990 | . . . . . . . 8 PsMet |
32 | 29, 31 | oveq12d 5868 | . . . . . . 7 PsMet |
33 | 22, 26, 32 | 3brtr4d 4019 | . . . . . 6 PsMet |
34 | 33 | ralrimiva 2543 | . . . . 5 PsMet |
35 | 34 | ralrimiva 2543 | . . . 4 PsMet |
36 | 13, 35 | jca 304 | . . 3 PsMet |
37 | 36 | ralrimiva 2543 | . 2 PsMet |
38 | df-psmet 12740 | . . . . . 6 PsMet | |
39 | 38 | mptrcl 5576 | . . . . 5 PsMet |
40 | 39 | adantr 274 | . . . 4 PsMet |
41 | 40, 3 | ssexd 4127 | . . 3 PsMet |
42 | ispsmet 13076 | . . 3 PsMet | |
43 | 41, 42 | syl 14 | . 2 PsMet PsMet |
44 | 6, 37, 43 | mpbir2and 939 | 1 PsMet PsMet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 crab 2452 cvv 2730 wss 3121 class class class wbr 3987 cxp 4607 cres 4611 wf 5192 cfv 5196 (class class class)co 5850 cmap 6622 cc0 7761 cxr 7940 cle 7942 cxad 9714 PsMetcpsmet 12732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-map 6624 df-pnf 7943 df-mnf 7944 df-xr 7945 df-psmet 12740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |