ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest Unicode version

Theorem cnrest 13402
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnrest.1  |-  X  = 
U. J
Assertion
Ref Expression
cnrest  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )

Proof of Theorem cnrest
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 cnrest.1 . . . . 5  |-  X  = 
U. J
2 eqid 2177 . . . . 5  |-  U. K  =  U. K
31, 2cnf 13371 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
43adantr 276 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  F : X --> U. K
)
5 simpr 110 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A  C_  X )
64, 5fssresd 5388 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A ) : A --> U. K
)
7 cnvresima 5114 . . . 4  |-  ( `' ( F  |`  A )
" o )  =  ( ( `' F " o )  i^i  A
)
8 cntop1 13368 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
98adantr 276 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  J  e.  Top )
109adantr 276 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  J  e.  Top )
111topopn 13173 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  J )
12 ssexg 4139 . . . . . . . . 9  |-  ( ( A  C_  X  /\  X  e.  J )  ->  A  e.  _V )
1312ancoms 268 . . . . . . . 8  |-  ( ( X  e.  J  /\  A  C_  X )  ->  A  e.  _V )
1411, 13sylan 283 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  A  e.  _V )
158, 14sylan 283 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A  e.  _V )
1615adantr 276 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  A  e.  _V )
17 cnima 13387 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  o  e.  K )  ->  ( `' F "
o )  e.  J
)
1817adantlr 477 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  ( `' F " o )  e.  J )
19 elrestr 12644 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  _V  /\  ( `' F " o )  e.  J )  -> 
( ( `' F " o )  i^i  A
)  e.  ( Jt  A ) )
2010, 16, 18, 19syl3anc 1238 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  (
( `' F "
o )  i^i  A
)  e.  ( Jt  A ) )
217, 20eqeltrid 2264 . . 3  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) )
2221ralrimiva 2550 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A. o  e.  K  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) )
231toptopon 13183 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
248, 23sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
25 resttopon 13338 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
2624, 25sylan 283 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( Jt  A )  e.  (TopOn `  A ) )
27 cntop2 13369 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
2827adantr 276 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  K  e.  Top )
292toptopon 13183 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3028, 29sylib 122 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  K  e.  (TopOn `  U. K ) )
31 iscn 13364 . . 3  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  U. K ) )  ->  ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. o  e.  K  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) ) ) )
3226, 30, 31syl2anc 411 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K
)  <->  ( ( F  |`  A ) : A --> U. K  /\  A. o  e.  K  ( `' ( F  |`  A )
" o )  e.  ( Jt  A ) ) ) )
336, 22, 32mpbir2and 944 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2737    i^i cin 3128    C_ wss 3129   U.cuni 3807   `'ccnv 4622    |` cres 4625   "cima 4626   -->wf 5208   ` cfv 5212  (class class class)co 5869   ↾t crest 12636   Topctop 13162  TopOnctopon 13175    Cn ccn 13352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-map 6644  df-rest 12638  df-topgen 12657  df-top 13163  df-topon 13176  df-bases 13208  df-cn 13355
This theorem is referenced by:  cnmpt1res  13463  cnmpt2res  13464  hmeores  13482
  Copyright terms: Public domain W3C validator