| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnrest | Unicode version | ||
| Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnrest.1 |
|
| Ref | Expression |
|---|---|
| cnrest |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrest.1 |
. . . . 5
| |
| 2 | eqid 2196 |
. . . . 5
| |
| 3 | 1, 2 | cnf 14524 |
. . . 4
|
| 4 | 3 | adantr 276 |
. . 3
|
| 5 | simpr 110 |
. . 3
| |
| 6 | 4, 5 | fssresd 5437 |
. 2
|
| 7 | cnvresima 5160 |
. . . 4
| |
| 8 | cntop1 14521 |
. . . . . . 7
| |
| 9 | 8 | adantr 276 |
. . . . . 6
|
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | 1 | topopn 14328 |
. . . . . . . 8
|
| 12 | ssexg 4173 |
. . . . . . . . 9
| |
| 13 | 12 | ancoms 268 |
. . . . . . . 8
|
| 14 | 11, 13 | sylan 283 |
. . . . . . 7
|
| 15 | 8, 14 | sylan 283 |
. . . . . 6
|
| 16 | 15 | adantr 276 |
. . . . 5
|
| 17 | cnima 14540 |
. . . . . 6
| |
| 18 | 17 | adantlr 477 |
. . . . 5
|
| 19 | elrestr 12949 |
. . . . 5
| |
| 20 | 10, 16, 18, 19 | syl3anc 1249 |
. . . 4
|
| 21 | 7, 20 | eqeltrid 2283 |
. . 3
|
| 22 | 21 | ralrimiva 2570 |
. 2
|
| 23 | 1 | toptopon 14338 |
. . . . 5
|
| 24 | 8, 23 | sylib 122 |
. . . 4
|
| 25 | resttopon 14491 |
. . . 4
| |
| 26 | 24, 25 | sylan 283 |
. . 3
|
| 27 | cntop2 14522 |
. . . . 5
| |
| 28 | 27 | adantr 276 |
. . . 4
|
| 29 | 2 | toptopon 14338 |
. . . 4
|
| 30 | 28, 29 | sylib 122 |
. . 3
|
| 31 | iscn 14517 |
. . 3
| |
| 32 | 26, 30, 31 | syl2anc 411 |
. 2
|
| 33 | 6, 22, 32 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-rest 12943 df-topgen 12962 df-top 14318 df-topon 14331 df-bases 14363 df-cn 14508 |
| This theorem is referenced by: cnmpt1res 14616 cnmpt2res 14617 hmeores 14635 |
| Copyright terms: Public domain | W3C validator |