Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnrest | Unicode version |
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnrest.1 |
Ref | Expression |
---|---|
cnrest | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrest.1 | . . . . 5 | |
2 | eqid 2170 | . . . . 5 | |
3 | 1, 2 | cnf 12963 | . . . 4 |
4 | 3 | adantr 274 | . . 3 |
5 | simpr 109 | . . 3 | |
6 | 4, 5 | fssresd 5372 | . 2 |
7 | cnvresima 5098 | . . . 4 | |
8 | cntop1 12960 | . . . . . . 7 | |
9 | 8 | adantr 274 | . . . . . 6 |
10 | 9 | adantr 274 | . . . . 5 |
11 | 1 | topopn 12765 | . . . . . . . 8 |
12 | ssexg 4126 | . . . . . . . . 9 | |
13 | 12 | ancoms 266 | . . . . . . . 8 |
14 | 11, 13 | sylan 281 | . . . . . . 7 |
15 | 8, 14 | sylan 281 | . . . . . 6 |
16 | 15 | adantr 274 | . . . . 5 |
17 | cnima 12979 | . . . . . 6 | |
18 | 17 | adantlr 474 | . . . . 5 |
19 | elrestr 12580 | . . . . 5 ↾t | |
20 | 10, 16, 18, 19 | syl3anc 1233 | . . . 4 ↾t |
21 | 7, 20 | eqeltrid 2257 | . . 3 ↾t |
22 | 21 | ralrimiva 2543 | . 2 ↾t |
23 | 1 | toptopon 12775 | . . . . 5 TopOn |
24 | 8, 23 | sylib 121 | . . . 4 TopOn |
25 | resttopon 12930 | . . . 4 TopOn ↾t TopOn | |
26 | 24, 25 | sylan 281 | . . 3 ↾t TopOn |
27 | cntop2 12961 | . . . . 5 | |
28 | 27 | adantr 274 | . . . 4 |
29 | 2 | toptopon 12775 | . . . 4 TopOn |
30 | 28, 29 | sylib 121 | . . 3 TopOn |
31 | iscn 12956 | . . 3 ↾t TopOn TopOn ↾t ↾t | |
32 | 26, 30, 31 | syl2anc 409 | . 2 ↾t ↾t |
33 | 6, 22, 32 | mpbir2and 939 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 cvv 2730 cin 3120 wss 3121 cuni 3794 ccnv 4608 cres 4611 cima 4612 wf 5192 cfv 5196 (class class class)co 5851 ↾t crest 12572 ctop 12754 TopOnctopon 12767 ccn 12944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-map 6626 df-rest 12574 df-topgen 12593 df-top 12755 df-topon 12768 df-bases 12800 df-cn 12947 |
This theorem is referenced by: cnmpt1res 13055 cnmpt2res 13056 hmeores 13074 |
Copyright terms: Public domain | W3C validator |