ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest Unicode version

Theorem cnrest 12875
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnrest.1  |-  X  = 
U. J
Assertion
Ref Expression
cnrest  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )

Proof of Theorem cnrest
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 cnrest.1 . . . . 5  |-  X  = 
U. J
2 eqid 2165 . . . . 5  |-  U. K  =  U. K
31, 2cnf 12844 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
43adantr 274 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  F : X --> U. K
)
5 simpr 109 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A  C_  X )
64, 5fssresd 5364 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A ) : A --> U. K
)
7 cnvresima 5093 . . . 4  |-  ( `' ( F  |`  A )
" o )  =  ( ( `' F " o )  i^i  A
)
8 cntop1 12841 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
98adantr 274 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  J  e.  Top )
109adantr 274 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  J  e.  Top )
111topopn 12646 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  J )
12 ssexg 4121 . . . . . . . . 9  |-  ( ( A  C_  X  /\  X  e.  J )  ->  A  e.  _V )
1312ancoms 266 . . . . . . . 8  |-  ( ( X  e.  J  /\  A  C_  X )  ->  A  e.  _V )
1411, 13sylan 281 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  A  e.  _V )
158, 14sylan 281 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A  e.  _V )
1615adantr 274 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  A  e.  _V )
17 cnima 12860 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  o  e.  K )  ->  ( `' F "
o )  e.  J
)
1817adantlr 469 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  ( `' F " o )  e.  J )
19 elrestr 12564 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  _V  /\  ( `' F " o )  e.  J )  -> 
( ( `' F " o )  i^i  A
)  e.  ( Jt  A ) )
2010, 16, 18, 19syl3anc 1228 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  (
( `' F "
o )  i^i  A
)  e.  ( Jt  A ) )
217, 20eqeltrid 2253 . . 3  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) )
2221ralrimiva 2539 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A. o  e.  K  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) )
231toptopon 12656 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
248, 23sylib 121 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
25 resttopon 12811 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
2624, 25sylan 281 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( Jt  A )  e.  (TopOn `  A ) )
27 cntop2 12842 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
2827adantr 274 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  K  e.  Top )
292toptopon 12656 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3028, 29sylib 121 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  K  e.  (TopOn `  U. K ) )
31 iscn 12837 . . 3  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  U. K ) )  ->  ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. o  e.  K  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) ) ) )
3226, 30, 31syl2anc 409 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K
)  <->  ( ( F  |`  A ) : A --> U. K  /\  A. o  e.  K  ( `' ( F  |`  A )
" o )  e.  ( Jt  A ) ) ) )
336, 22, 32mpbir2and 934 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    i^i cin 3115    C_ wss 3116   U.cuni 3789   `'ccnv 4603    |` cres 4606   "cima 4607   -->wf 5184   ` cfv 5188  (class class class)co 5842   ↾t crest 12556   Topctop 12635  TopOnctopon 12648    Cn ccn 12825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-rest 12558  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828
This theorem is referenced by:  cnmpt1res  12936  cnmpt2res  12937  hmeores  12955
  Copyright terms: Public domain W3C validator