ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest Unicode version

Theorem cnrest 14822
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnrest.1  |-  X  = 
U. J
Assertion
Ref Expression
cnrest  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )

Proof of Theorem cnrest
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 cnrest.1 . . . . 5  |-  X  = 
U. J
2 eqid 2207 . . . . 5  |-  U. K  =  U. K
31, 2cnf 14791 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
43adantr 276 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  F : X --> U. K
)
5 simpr 110 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A  C_  X )
64, 5fssresd 5474 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A ) : A --> U. K
)
7 cnvresima 5191 . . . 4  |-  ( `' ( F  |`  A )
" o )  =  ( ( `' F " o )  i^i  A
)
8 cntop1 14788 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
98adantr 276 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  J  e.  Top )
109adantr 276 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  J  e.  Top )
111topopn 14595 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  J )
12 ssexg 4199 . . . . . . . . 9  |-  ( ( A  C_  X  /\  X  e.  J )  ->  A  e.  _V )
1312ancoms 268 . . . . . . . 8  |-  ( ( X  e.  J  /\  A  C_  X )  ->  A  e.  _V )
1411, 13sylan 283 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  A  e.  _V )
158, 14sylan 283 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A  e.  _V )
1615adantr 276 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  A  e.  _V )
17 cnima 14807 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  o  e.  K )  ->  ( `' F "
o )  e.  J
)
1817adantlr 477 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  ( `' F " o )  e.  J )
19 elrestr 13194 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  _V  /\  ( `' F " o )  e.  J )  -> 
( ( `' F " o )  i^i  A
)  e.  ( Jt  A ) )
2010, 16, 18, 19syl3anc 1250 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  (
( `' F "
o )  i^i  A
)  e.  ( Jt  A ) )
217, 20eqeltrid 2294 . . 3  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) )
2221ralrimiva 2581 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A. o  e.  K  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) )
231toptopon 14605 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
248, 23sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
25 resttopon 14758 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
2624, 25sylan 283 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( Jt  A )  e.  (TopOn `  A ) )
27 cntop2 14789 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
2827adantr 276 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  K  e.  Top )
292toptopon 14605 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3028, 29sylib 122 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  K  e.  (TopOn `  U. K ) )
31 iscn 14784 . . 3  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  U. K ) )  ->  ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. o  e.  K  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) ) ) )
3226, 30, 31syl2anc 411 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K
)  <->  ( ( F  |`  A ) : A --> U. K  /\  A. o  e.  K  ( `' ( F  |`  A )
" o )  e.  ( Jt  A ) ) ) )
336, 22, 32mpbir2and 947 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776    i^i cin 3173    C_ wss 3174   U.cuni 3864   `'ccnv 4692    |` cres 4695   "cima 4696   -->wf 5286   ` cfv 5290  (class class class)co 5967   ↾t crest 13186   Topctop 14584  TopOnctopon 14597    Cn ccn 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-rest 13188  df-topgen 13207  df-top 14585  df-topon 14598  df-bases 14630  df-cn 14775
This theorem is referenced by:  cnmpt1res  14883  cnmpt2res  14884  hmeores  14902
  Copyright terms: Public domain W3C validator