![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fssresd | GIF version |
Description: Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fssresd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssresd.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
fssresd | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssresd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fssresd.2 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | fssres 5430 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3154 ↾ cres 4662 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-fun 5257 df-fn 5258 df-f 5259 |
This theorem is referenced by: gsumsplit1r 12984 znf1o 14150 cnrest 14414 cnptopresti 14417 cnptoprest 14418 psmetres2 14512 xmetres2 14558 metres2 14560 xmetresbl 14619 rescncf 14760 trilpolemlt1 15601 |
Copyright terms: Public domain | W3C validator |