ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metres2 Unicode version

Theorem metres2 15055
Description: Lemma for metres 15057. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres2  |-  ( ( D  e.  ( Met `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  ( Met `  R
) )

Proof of Theorem metres2
StepHypRef Expression
1 metxmet 15029 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
2 xmetres2 15053 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( *Met `  R
) )
31, 2sylan 283 . 2  |-  ( ( D  e.  ( Met `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  ( *Met `  R ) )
4 metf 15025 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
54adantr 276 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  R  C_  X )  ->  D : ( X  X.  X ) --> RR )
6 simpr 110 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  R  C_  X )  ->  R  C_  X )
7 xpss12 4826 . . . 4  |-  ( ( R  C_  X  /\  R  C_  X )  -> 
( R  X.  R
)  C_  ( X  X.  X ) )
86, 7sylancom 420 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  R  C_  X )  ->  ( R  X.  R )  C_  ( X  X.  X
) )
95, 8fssresd 5502 . 2  |-  ( ( D  e.  ( Met `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) ) : ( R  X.  R
) --> RR )
10 ismet2 15028 . 2  |-  ( ( D  |`  ( R  X.  R ) )  e.  ( Met `  R
)  <->  ( ( D  |`  ( R  X.  R
) )  e.  ( *Met `  R
)  /\  ( D  |`  ( R  X.  R
) ) : ( R  X.  R ) --> RR ) )
113, 9, 10sylanbrc 417 1  |-  ( ( D  e.  ( Met `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  ( Met `  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200    C_ wss 3197    X. cxp 4717    |` cres 4721   -->wf 5314   ` cfv 5318   RRcr 7998   *Metcxmet 14500   Metcmet 14501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-rnegex 8108
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-pnf 8183  df-mnf 8184  df-xr 8185  df-xadd 9969  df-xmet 14508  df-met 14509
This theorem is referenced by:  metres  15057  remet  15222
  Copyright terms: Public domain W3C validator