ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvcnv GIF version

Theorem funcnvcnv 5339
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
Assertion
Ref Expression
funcnvcnv (Fun 𝐴 → Fun 𝐴)

Proof of Theorem funcnvcnv
StepHypRef Expression
1 cnvcnvss 5143 . 2 𝐴𝐴
2 funss 5296 . 2 (𝐴𝐴 → (Fun 𝐴 → Fun 𝐴))
31, 2ax-mp 5 1 (Fun 𝐴 → Fun 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3168  ccnv 4679  Fun wfun 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-fun 5279
This theorem is referenced by:  funcnvres2  5355  inpreima  5716  difpreima  5717  f1oresrab  5755  sbthlemi8  7078  caseinj  7203  djuinj  7220  cnclima  14745
  Copyright terms: Public domain W3C validator