ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funexw Unicode version

Theorem funexw 6080
Description: Weak version of funex 5708 that holds without ax-coll 4097. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
funexw  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  e.  _V )

Proof of Theorem funexw
StepHypRef Expression
1 xpexg 4718 . . 3  |-  ( ( dom  F  e.  B  /\  ran  F  e.  C
)  ->  ( dom  F  X.  ran  F )  e.  _V )
213adant1 1005 . 2  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  -> 
( dom  F  X.  ran  F )  e.  _V )
3 funrel 5205 . . . 4  |-  ( Fun 
F  ->  Rel  F )
4 relssdmrn 5124 . . . 4  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
53, 4syl 14 . . 3  |-  ( Fun 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
653ad2ant1 1008 . 2  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  C_  ( dom  F  X.  ran  F ) )
72, 6ssexd 4122 1  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    e. wcel 2136   _Vcvv 2726    C_ wss 3116    X. cxp 4602   dom cdm 4604   ran crn 4605   Rel wrel 4609   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-fun 5190
This theorem is referenced by:  mptexw  6081  mpoexw  6181
  Copyright terms: Public domain W3C validator