ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funexw Unicode version

Theorem funexw 6257
Description: Weak version of funex 5862 that holds without ax-coll 4199. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
funexw  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  e.  _V )

Proof of Theorem funexw
StepHypRef Expression
1 xpexg 4833 . . 3  |-  ( ( dom  F  e.  B  /\  ran  F  e.  C
)  ->  ( dom  F  X.  ran  F )  e.  _V )
213adant1 1039 . 2  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  -> 
( dom  F  X.  ran  F )  e.  _V )
3 funrel 5335 . . . 4  |-  ( Fun 
F  ->  Rel  F )
4 relssdmrn 5249 . . . 4  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
53, 4syl 14 . . 3  |-  ( Fun 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
653ad2ant1 1042 . 2  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  C_  ( dom  F  X.  ran  F ) )
72, 6ssexd 4224 1  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    e. wcel 2200   _Vcvv 2799    C_ wss 3197    X. cxp 4717   dom cdm 4719   ran crn 4720   Rel wrel 4724   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-fun 5320
This theorem is referenced by:  mptexw  6258  mpoexw  6359
  Copyright terms: Public domain W3C validator