ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funexw Unicode version

Theorem funexw 6091
Description: Weak version of funex 5719 that holds without ax-coll 4104. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
funexw  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  e.  _V )

Proof of Theorem funexw
StepHypRef Expression
1 xpexg 4725 . . 3  |-  ( ( dom  F  e.  B  /\  ran  F  e.  C
)  ->  ( dom  F  X.  ran  F )  e.  _V )
213adant1 1010 . 2  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  -> 
( dom  F  X.  ran  F )  e.  _V )
3 funrel 5215 . . . 4  |-  ( Fun 
F  ->  Rel  F )
4 relssdmrn 5131 . . . 4  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
53, 4syl 14 . . 3  |-  ( Fun 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
653ad2ant1 1013 . 2  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  C_  ( dom  F  X.  ran  F ) )
72, 6ssexd 4129 1  |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 973    e. wcel 2141   _Vcvv 2730    C_ wss 3121    X. cxp 4609   dom cdm 4611   ran crn 4612   Rel wrel 4616   Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-fun 5200
This theorem is referenced by:  mptexw  6092  mpoexw  6192
  Copyright terms: Public domain W3C validator