ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexw Unicode version

Theorem mptexw 6139
Description: Weak version of mptex 5763 that holds without ax-coll 4133. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mptexw.1  |-  A  e. 
_V
mptexw.2  |-  C  e. 
_V
mptexw.3  |-  A. x  e.  A  B  e.  C
Assertion
Ref Expression
mptexw  |-  ( x  e.  A  |->  B )  e.  _V
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem mptexw
StepHypRef Expression
1 funmpt 5273 . 2  |-  Fun  (
x  e.  A  |->  B )
2 mptexw.1 . . 3  |-  A  e. 
_V
3 eqid 2189 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43dmmptss 5143 . . 3  |-  dom  (
x  e.  A  |->  B )  C_  A
52, 4ssexi 4156 . 2  |-  dom  (
x  e.  A  |->  B )  e.  _V
6 mptexw.2 . . 3  |-  C  e. 
_V
7 mptexw.3 . . . 4  |-  A. x  e.  A  B  e.  C
83rnmptss 5698 . . . 4  |-  ( A. x  e.  A  B  e.  C  ->  ran  (
x  e.  A  |->  B )  C_  C )
97, 8ax-mp 5 . . 3  |-  ran  (
x  e.  A  |->  B )  C_  C
106, 9ssexi 4156 . 2  |-  ran  (
x  e.  A  |->  B )  e.  _V
11 funexw 6138 . 2  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V  /\ 
ran  ( x  e.  A  |->  B )  e. 
_V )  ->  (
x  e.  A  |->  B )  e.  _V )
121, 5, 10, 11mp3an 1348 1  |-  ( x  e.  A  |->  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   A.wral 2468   _Vcvv 2752    C_ wss 3144    |-> cmpt 4079   dom cdm 4644   ran crn 4645   Fun wfun 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator