ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexw Unicode version

Theorem mptexw 6198
Description: Weak version of mptex 5810 that holds without ax-coll 4159. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mptexw.1  |-  A  e. 
_V
mptexw.2  |-  C  e. 
_V
mptexw.3  |-  A. x  e.  A  B  e.  C
Assertion
Ref Expression
mptexw  |-  ( x  e.  A  |->  B )  e.  _V
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem mptexw
StepHypRef Expression
1 funmpt 5309 . 2  |-  Fun  (
x  e.  A  |->  B )
2 mptexw.1 . . 3  |-  A  e. 
_V
3 eqid 2205 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43dmmptss 5179 . . 3  |-  dom  (
x  e.  A  |->  B )  C_  A
52, 4ssexi 4182 . 2  |-  dom  (
x  e.  A  |->  B )  e.  _V
6 mptexw.2 . . 3  |-  C  e. 
_V
7 mptexw.3 . . . 4  |-  A. x  e.  A  B  e.  C
83rnmptss 5741 . . . 4  |-  ( A. x  e.  A  B  e.  C  ->  ran  (
x  e.  A  |->  B )  C_  C )
97, 8ax-mp 5 . . 3  |-  ran  (
x  e.  A  |->  B )  C_  C
106, 9ssexi 4182 . 2  |-  ran  (
x  e.  A  |->  B )  e.  _V
11 funexw 6197 . 2  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V  /\ 
ran  ( x  e.  A  |->  B )  e. 
_V )  ->  (
x  e.  A  |->  B )  e.  _V )
121, 5, 10, 11mp3an 1350 1  |-  ( x  e.  A  |->  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166    |-> cmpt 4105   dom cdm 4675   ran crn 4676   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator