ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexw Unicode version

Theorem mptexw 6081
Description: Weak version of mptex 5711 that holds without ax-coll 4097. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mptexw.1  |-  A  e. 
_V
mptexw.2  |-  C  e. 
_V
mptexw.3  |-  A. x  e.  A  B  e.  C
Assertion
Ref Expression
mptexw  |-  ( x  e.  A  |->  B )  e.  _V
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem mptexw
StepHypRef Expression
1 funmpt 5226 . 2  |-  Fun  (
x  e.  A  |->  B )
2 mptexw.1 . . 3  |-  A  e. 
_V
3 eqid 2165 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43dmmptss 5100 . . 3  |-  dom  (
x  e.  A  |->  B )  C_  A
52, 4ssexi 4120 . 2  |-  dom  (
x  e.  A  |->  B )  e.  _V
6 mptexw.2 . . 3  |-  C  e. 
_V
7 mptexw.3 . . . 4  |-  A. x  e.  A  B  e.  C
83rnmptss 5646 . . . 4  |-  ( A. x  e.  A  B  e.  C  ->  ran  (
x  e.  A  |->  B )  C_  C )
97, 8ax-mp 5 . . 3  |-  ran  (
x  e.  A  |->  B )  C_  C
106, 9ssexi 4120 . 2  |-  ran  (
x  e.  A  |->  B )  e.  _V
11 funexw 6080 . 2  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V  /\ 
ran  ( x  e.  A  |->  B )  e. 
_V )  ->  (
x  e.  A  |->  B )  e.  _V )
121, 5, 10, 11mp3an 1327 1  |-  ( x  e.  A  |->  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   A.wral 2444   _Vcvv 2726    C_ wss 3116    |-> cmpt 4043   dom cdm 4604   ran crn 4605   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator