ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexw Unicode version

Theorem mptexw 6258
Description: Weak version of mptex 5865 that holds without ax-coll 4199. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mptexw.1  |-  A  e. 
_V
mptexw.2  |-  C  e. 
_V
mptexw.3  |-  A. x  e.  A  B  e.  C
Assertion
Ref Expression
mptexw  |-  ( x  e.  A  |->  B )  e.  _V
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem mptexw
StepHypRef Expression
1 funmpt 5356 . 2  |-  Fun  (
x  e.  A  |->  B )
2 mptexw.1 . . 3  |-  A  e. 
_V
3 eqid 2229 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43dmmptss 5225 . . 3  |-  dom  (
x  e.  A  |->  B )  C_  A
52, 4ssexi 4222 . 2  |-  dom  (
x  e.  A  |->  B )  e.  _V
6 mptexw.2 . . 3  |-  C  e. 
_V
7 mptexw.3 . . . 4  |-  A. x  e.  A  B  e.  C
83rnmptss 5796 . . . 4  |-  ( A. x  e.  A  B  e.  C  ->  ran  (
x  e.  A  |->  B )  C_  C )
97, 8ax-mp 5 . . 3  |-  ran  (
x  e.  A  |->  B )  C_  C
106, 9ssexi 4222 . 2  |-  ran  (
x  e.  A  |->  B )  e.  _V
11 funexw 6257 . 2  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V  /\ 
ran  ( x  e.  A  |->  B )  e. 
_V )  ->  (
x  e.  A  |->  B )  e.  _V )
121, 5, 10, 11mp3an 1371 1  |-  ( x  e.  A  |->  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197    |-> cmpt 4145   dom cdm 4719   ran crn 4720   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator