ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexw Unicode version

Theorem mptexw 6116
Description: Weak version of mptex 5744 that holds without ax-coll 4120. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mptexw.1  |-  A  e. 
_V
mptexw.2  |-  C  e. 
_V
mptexw.3  |-  A. x  e.  A  B  e.  C
Assertion
Ref Expression
mptexw  |-  ( x  e.  A  |->  B )  e.  _V
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem mptexw
StepHypRef Expression
1 funmpt 5256 . 2  |-  Fun  (
x  e.  A  |->  B )
2 mptexw.1 . . 3  |-  A  e. 
_V
3 eqid 2177 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43dmmptss 5127 . . 3  |-  dom  (
x  e.  A  |->  B )  C_  A
52, 4ssexi 4143 . 2  |-  dom  (
x  e.  A  |->  B )  e.  _V
6 mptexw.2 . . 3  |-  C  e. 
_V
7 mptexw.3 . . . 4  |-  A. x  e.  A  B  e.  C
83rnmptss 5679 . . . 4  |-  ( A. x  e.  A  B  e.  C  ->  ran  (
x  e.  A  |->  B )  C_  C )
97, 8ax-mp 5 . . 3  |-  ran  (
x  e.  A  |->  B )  C_  C
106, 9ssexi 4143 . 2  |-  ran  (
x  e.  A  |->  B )  e.  _V
11 funexw 6115 . 2  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V  /\ 
ran  ( x  e.  A  |->  B )  e. 
_V )  ->  (
x  e.  A  |->  B )  e.  _V )
121, 5, 10, 11mp3an 1337 1  |-  ( x  e.  A  |->  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   A.wral 2455   _Vcvv 2739    C_ wss 3131    |-> cmpt 4066   dom cdm 4628   ran crn 4629   Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator